- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我是 PyMC3 的新手,正在尝试实现 Kruschke (2015) 第 12.2.2 节(模型比较)中的分层模型。
我成功地定义了完整的模型,然后查看后验参数值的差异(确定差异是否可以可信地称为零)。
我还尝试在书中所示的模型中明确进行比较(定义完整模型和受限模型并使用分类分布对它们进行采样)。
基本上,我尝试在 PyMC3 中实现以下 JAGS 模型定义。
http://nbviewer.jupyter.org/github/JWarmenhoven/DBDA-python/blob/master/Notebooks/Chapter%2012.ipynb
但我不知道如何使用模型索引来选择(伪)先验。有什么指点吗?
杰格斯:
model {
for ( s in 1:nSubj ) {
nCorrOfSubj[s] ~ dbin( theta[s] , nTrlOfSubj[s] )
theta[s] ~ dbeta( aBeta[CondOfSubj[s]] , bBeta[CondOfSubj[s]] )
}
for ( j in 1:nCond ) {
# Use omega[j] for model index 1, omega0 for model index 2:
aBeta[j] <- ( equals(mdlIdx,1)*omega[j]
+ equals(mdlIdx,2)*omega0 ) * (kappa[j]-2)+1
bBeta[j] <- ( 1 - ( equals(mdlIdx,1)*omega[j]
+ equals(mdlIdx,2)*omega0 ) ) * (kappa[j]-2)+1
omega[j] ~ dbeta( a[j,mdlIdx] , b[j,mdlIdx] )
}
omega0 ~ dbeta( a0[mdlIdx] , b0[mdlIdx] )
for ( j in 1:nCond ) {
kappa[j] <- kappaMinusTwo[j] + 2
kappaMinusTwo[j] ~ dgamma( 2.618 , 0.0809 ) # mode 20 , sd 20
}
# Constants for prior and pseudoprior:
aP <- 1
bP <- 1
# a0[model] and b0[model]
a0[1] <- .48*500 # pseudo
b0[1] <- (1-.48)*500 # pseudo
a0[2] <- aP # true
b0[2] <- bP # true
# a[condition,model] and b[condition,model]
a[1,1] <- aP # true
a[2,1] <- aP # true
a[3,1] <- aP # true
a[4,1] <- aP # true
b[1,1] <- bP # true
b[2,1] <- bP # true
b[3,1] <- bP # true
b[4,1] <- bP # true
a[1,2] <- .40*125 # pseudo
a[2,2] <- .50*125 # pseudo
a[3,2] <- .51*125 # pseudo
b[1,2] <- (1-.40)*125 # pseudo
b[2,2] <- (1-.50)*125 # pseudo
b[3,2] <- (1-.51)*125 # pseudo
b[4,2] <- (1-.52)*125 # pseudo
# Prior on model index:
mdlIdx ~ dcat( modelProb[] )
modelProb[1] <- .5
modelProb[2] <- .5
}
PyMC3:
with pmc.Model() as model_1:
# constants
aP, bP = 1, 1
# Pseudo- and true hyperpriors per model
a0 = [.48*500, aP]
b0 = [(1-.48)*500, bP]
# Lower level pseudo- and true priors per model/condition combination
a = np.c_[np.tile(aP, 4), [(.40*125), (.50*125), (.51*125), (.52*125)]]
b = np.c_[np.tile(bP, 4), [(1-.40)*125, (1-.50)*125, (1-.51)*125, (1-.52)*125]]
# Prior on model index [0,1]
m_idx = pmc.Categorical('m_idx', np.asarray([.5, .5]))
# Priors on concentration parameters
kappa = pmc.Gamma('kappa', 2.618, 0.0809, shape=nCond)
# omega0
omega0 = pmc.Beta('omega0', a0[m_idx], b0[m_idx])
# omega (condition specific)
omega = pmc.Beta('omega', a[:,m_idx], b[:,m_idx], shape=nCond)
# theta
aBeta = pmc.switch(eq(m_idx, 0), omega0 * kappa[cond_idx]+1, omega[cond_idx] * kappa[cond_idx]+1)
bBeta = pmc.switch(eq(m_idx, 0), (1-omega0) * kappa[cond_idx]+1, (1-omega[cond_idx]) * kappa[cond_idx]+1)
theta = pmc.Beta('theta', aBeta[cond_idx], bBeta[cond_idx], shape=df.index.size)
# Likelihood
y = pmc.Binomial('y', n=df.nTrlOfSubj.values, p=theta, observed=df.nCorrOfSubj)
Applied log-transform to kappa and added transformed kappa_log_ to model.
输出:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-40-74e77ccc6ce9> in <module>()
8
9 # omega0
---> 10 omega0 = pmc.Beta('omega0', a0[m_idx], b0[m_idx])
11
12 # omega (condition specific)
TypeError: list indices must be integers or slices, not FreeRV
已更新
纠正伪先验(缺少括号)后,结果看起来好多了。但是,我不确定 pmc.Beta() 函数是否可以很好地使用数组作为 a 和 b 的参数。 http://nbviewer.jupyter.org/github/JWarmenhoven/DBDA-python/blob/master/Notebooks/Chapter%2012.ipynb
最佳答案
您收到的错误是因为您尝试使用张量对列表进行索引。解决这个问题的一种方法是将列表转换为张量。
import theano.tensor as tt
a0 = tt.as_tensor([.48*500, aP])
或者,您可以使用 pmc.switch()
在先验和伪先验之间进行选择,例如:
a0 = pm.switch(m_idx, .48*500, aP)
我没有彻底检查你的代码,但注意到你已经
pmc.switch(eq(m_idx, 0)....)
相反,你应该写
pmc.switch(pmc.eq(m_idx, 0)....)
或者可能是:
pmc.switch(m_idx)....)
因为 0 计算结果为 False
,1 计算结果为 True
。
你还有
omega = pmc.Beta('omega0'...)
你应该有
omega = pmc.Beta('omega'...)
你的问题让我意识到我忘记了 port一个伪先例。我会尽快完成。
已编辑
这里是完整模型
with pmc.Model() as model_1:
# constants
aP, bP = 1., 1.
# Pseudo- and true hyperpriors per model
a0 = tt.as_tensor([aP, .48*500])
b0 = tt.as_tensor([bP, (1-.48)*500])
# Lower level pseudo- and true priors per model/condition combination
a = tt.as_tensor(np.c_[[(.40*125), (.50*125), (.51*125), (.52*125)], np.tile(aP, 4)])
b = tt.as_tensor(np.c_[[((1-.40)*125), ((1-.50)*125), ((1-.51)*125), ((1-.52)*125)], np.tile(bP, 4)])
# Prior on model index [0,1]
m_idx = pmc.Categorical('m_idx', p=np.array([.5, .5]))
# Priors on concentration parameters
kappa = pmc.Gamma('kappa', 2.618, 0.0809, shape=nCond)
# omega0
omega0 = pmc.Beta('omega0', a0[m_idx], b0[m_idx])
# omega (condition specific)
omega = pmc.Beta('omega', a[:,m_idx], b[:,m_idx], shape=nCond)
# theta
aBeta = pmc.switch(pmc.eq(m_idx, 0), omega0 * kappa+1, omega * kappa+1)
bBeta = pmc.switch(pmc.eq(m_idx, 0), (1-omega0) * kappa+1, (1-omega) * kappa+1)
theta = pmc.Beta('theta', aBeta, bBeta, shape=nCond)
# Likelihood
y = pmc.Binomial('y', n=df.nTrlOfSubj.values, p=theta[cond_idx], observed=df.nCorrOfSubj)
trace = pmc.sample(1000)
请注意,您的代码有几个问题,例如变量 b
的定义中缺少括号,以及先验和伪先验的顺序颠倒了。另外,我更改了 ordet 中的代码,让 aBeta
、bBeta
和 theta
具有 shape=nCond,然后很可能定义 p
为 p=theta[cond_idx]
。
我没有对照 Kruschke 的书检查结果,但跟踪看起来很合理。
关于python - PyMC3 中的模型比较,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39186183/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!