- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有以下数据框(由下面的字典表示):
{'Name': {0: '204',
1: '110838',
2: '110999',
3: '110998',
4: '111155',
5: '111710',
6: '111157',
7: '111156',
8: '111144',
9: '118972',
10: '111289',
11: '111288',
12: '111145',
13: '121131',
14: '118990',
15: '110653',
16: '110693',
17: '110694',
18: '111577',
19: '111702',
20: '115424',
21: '115127',
22: '115178',
23: '111578',
24: '115409',
25: '115468',
26: '111711',
27: '115163',
28: '115149',
29: '115251'},
'Sequence_new': {0: 1.0,
1: 2.0,
2: 3.0,
3: 4.0,
4: 5.0,
5: 6.0,
6: 7.0,
7: 8.0,
8: 9.0,
9: 10.0,
10: 11.0,
11: 12.0,
12: nan,
13: 13.0,
14: 14.0,
15: 15.0,
16: 16.0,
17: 17.0,
18: 18.0,
19: 19.0,
20: 20.0,
21: 21.0,
22: 22.0,
23: 23.0,
24: 24.0,
25: 25.0,
26: 26.0,
27: 27.0,
28: 28.0,
29: 29.0},
'Sequence_old': {0: 1,
1: 2,
2: 3,
3: 4,
4: 5,
5: 6,
6: 7,
7: 8,
8: 9,
9: 10,
10: 11,
11: 12,
12: 13,
13: 14,
14: 15,
15: 16,
16: 17,
17: 18,
18: 19,
19: 20,
20: 21,
21: 22,
22: 23,
23: 24,
24: 25,
25: 26,
26: 27,
27: 28,
28: 29,
29: 30}}
我试图了解新旧序列之间发生了什么变化。如果按照Name Sequence_old = Sequence_new
,则没有任何变化。如果 Sequence+_new
为 'nan'
,则名称已删除。你能帮忙在 pandas 中实现这个吗?到目前为止尝试了什么但没有成功:
for i in range(0, len(Merge)):
if Merge.iloc[i]['Sequence_x'] == Merge.iloc[i]['Sequence_y']:
Merge.iloc[i]['New'] = 'N'
else:
Merge.iloc[i]['New'] = 'Y'
谢谢
最佳答案
您可以使用双 numpy.where
条件为 isnull
:
mask = df.Sequence_old == df.Sequence_new
df['New'] = np.where(df.Sequence_new.isnull(), 'Removed',
np.where(mask, 'N', 'Y'))
print (df)
Name Sequence_new Sequence_old New
0 204 1.0 1 N
1 110838 2.0 2 N
2 110999 3.0 3 N
3 110998 4.0 4 N
4 111155 5.0 5 N
5 111710 6.0 6 N
6 111157 7.0 7 N
7 111156 8.0 8 N
8 111144 9.0 9 N
9 118972 10.0 10 N
10 111289 11.0 11 N
11 111288 12.0 12 N
12 111145 NaN 13 Removed
13 121131 13.0 14 Y
14 118990 14.0 15 Y
15 110653 15.0 16 Y
16 110693 16.0 17 Y
17 110694 17.0 18 Y
18 111577 18.0 19 Y
19 111702 19.0 20 Y
20 115424 20.0 21 Y
21 115127 21.0 22 Y
22 115178 22.0 23 Y
23 111578 23.0 24 Y
24 115409 24.0 25 Y
25 115468 25.0 26 Y
26 111711 26.0 27 Y
27 115163 27.0 28 Y
28 115149 28.0 29 Y
29 115251 29.0 30 Y
关于python - Pandas 比较 Dataframe 中的行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40123689/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!