- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我是 keras 的新用户,正在尝试实现 LSTM 模型。为了进行测试,我声明了如下模型,但由于输入维度不同而失败。虽然我在这个站点发现了类似的问题,但我自己找不到我的错误。
ValueError:
Error when checking model input:
expected lstm_input_4 to have 3 dimensions, but got array with shape (300, 100)
from keras.layers import Input, Dense
from keras.models import Sequential
from keras.layers import LSTM
from keras.optimizers import RMSprop, Adadelta
from keras.layers.wrappers import TimeDistributed
import numpy as np
in_size = 100
out_size = 10
nb_hidden = 8
model = Sequential()
model.add(LSTM(nb_hidden,
name='lstm',
activation='tanh',
return_sequences=True,
input_shape=(None, in_size)))
model.add(TimeDistributed(Dense(out_size, activation='softmax')))
adadelta = Adadelta(clipnorm=1.)
model.compile(optimizer=adadelta,
loss='categorical_crossentropy',
metrics=['accuracy'])
# create dummy data
data_size = 300
train = np.zeros((data_size, in_size,), dtype=np.float32)
labels = np.zeros((data_size, out_size,), dtype=np.float32)
model.fit(train, labels)
谢谢 Marcin Możejko。但是我有类似下面的错误。我更新了虚拟数据以供检查。这段代码有什么问题?
ValueError: Error when checking model target: expected timedistributed_36 to have 3 dimensions, but got array with shape (208, 1)
def create_dataset(X, Y, loop_back=1):
dataX, dataY = [], []
for i in range(len(X) - loop_back-1):
a = X[i:(i+loop_back), :]
dataX.append(a)
dataY.append(Y[i+loop_back, :])
return np.array(dataX), np.array(dataY)
data_size = 300
dataset = np.zeros((data_size, feature_size), dtype=np.float32)
dataset_labels = np.zeros((data_size, 1), dtype=np.float32)
train_size = int(data_size * 0.7)
trainX = dataset[0:train_size, :]
trainY = dataset_labels[0:train_size, :]
testX = dataset[train_size:, :]
testY = dataset_labels[train_size:, 0]
trainX, trainY = create_dataset(trainX, trainY)
print(trainX.shape, trainY.shape) # (208, 1, 1) (208, 1)
# in_size = 100
feature_size = 1
out_size = 1
nb_hidden = 8
model = Sequential()
model.add(LSTM(nb_hidden,
name='lstm',
activation='tanh',
return_sequences=True,
input_shape=(1, feature_size)))
model.add(TimeDistributed(Dense(out_size, activation='softmax')))
adadelta = Adadelta(clipnorm=1.)
model.compile(optimizer=adadelta,
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(trainX, trainY, nb_epoch=10, batch_size=1)
最佳答案
这是 Keras
中 LSTM
的一个非常经典的问题。 LSTM
输入形状应为 2d
- 形状为 (sequence_length, nb_of_features)
。额外的第三个维度来自示例维度 - 因此提供给模型的表具有形状 (nb_of_examples, sequence_length, nb_of_features)
。这就是您的问题所在。请记住,1-d
序列应表示为形状为 (sequence_length, 1)
的 2-d
数组。这应该是您的 LSTM
的输入形状:
model.add(LSTM(nb_hidden,
name='lstm',
activation='tanh',
return_sequences=True,
input_shape=(in_size, 1)))
并记住将您的输入 reshape
为适当的格式。
关于python - 喀拉斯 LSTM : Error when checking model input dimension,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42744903/
我对 mongoosejs 中模型的使用感到有些困惑。 可以通过这些方式使用 mongoose 创建模型 使用 Mongoose var mongoose = require('mongoose');
我正在看 from django.db import models class Publisher(models.Model): name = models.CharField(max_len
我有自己的 html 帮助器扩展,我用这种方式 model.Reason_ID, Register.PurchaseReason) %> 这样声明的。 public static MvcHtmlS
假设模型原本是存储在CPU上的,然后我想把它移到GPU0上,那么我可以这样做: device = torch.device('cuda:0') model = model.to(device) # o
我过去读过一些关于模型的 MVC 建议,指出不应为域和 View 重用相同的模型对象;但我找不到任何人愿意讨论为什么这很糟糕。 我认为创建两个单独的模型 - 一个用于域,一个用于 View - 然后在
我正在使用pytorch构建一个像VGG16这样的简单模型,并且我已经重载了函数forward在我的模型中。 我发现每个人都倾向于使用 model(input)得到输出而不是 model.forwar
tf.keras API 中的 models 是否多余?对于某些情况,即使不使用 models,代码也能正常运行。 keras.models.sequential 和 keras.sequential
当我尝试使用 docker 镜像运行 docker 容器时遇到问题:tensorflow/serving。 我运行命令: docker run --name=tf_serving -it tensor
我有一个模型,我用管道注册了它: register_step = PythonScriptStep(name = "Register Model",
如果 View 需要访问模型中的数据,您是否认为 Controller 应: a)将模型传递给 View b)将模型的数据传递给 View c)都不;这不应该是 Controller 所关心的。让 V
我正在寻找一个可以在模型中定义的字段,该字段本质上是一个列表,因为它将用于存储多个字符串值。显然CharField不能使用。 最佳答案 您正在描述一种多对一的关系。这应该通过一个额外的 Model 进
我最近了解了 Django 中的模型继承。我使用很棒的包 django-model-utils 取得了巨大的成功。我继承自 TimeStampedModel 和 SoftDeletableModel。
我正在使用基于 resnet50 的双输出模型进行项目。一个输出用于回归任务,第二个输出用于分类任务。 我的主要问题是关于模型评估。在训练期间,我在验证集的两个输出上都取得了不错的结果: - 综合损失
我是keras的新手。现在,我将使用我使用 model.fit_generator 训练的模型来预测测试图像组。我可以使用 model.predict 吗?不确定如何使用model.predict_g
在 MVC 应用程序中,我加入了多个表并将其从 Controller 返回到 View,如下所示: | EmployeeID | ControlID | DoorAddress | DoorID |
我在使用 sails-cassandra 连接系统的 Sails 中有一个 Data 模型。数据。 Data.count({...}).exec() 返回 1,但 Data.find({...}).e
我正在使用 PrimeFaces dataTable 开发一个 jsf 页面来显示用户列表。用户存储在 Model.User 类的对象中。
我正在关注https://www.tensorflow.org/tutorials/keras/basic_classification解决 Kaggle 挑战。 但是,我不明白应该将什么样的数据输入
我是这个领域的新手。那么,你们能帮忙如何为 CNN 创建 .config 文件吗? 传递有关如何执行此操作的文档或教程将对我有很大帮助。谢谢大家。 最佳答案 这个问题对我来说没有多大意义,因为 .co
我是“物理系统建模”主题的新手。我阅读了一些基础文献,并在 Modelica 和 Simulink/Simscape 中做了一些教程。我想问你,如果我对以下内容理解正确: 符号操作是将微分代数方程组(
我是一名优秀的程序员,十分优秀!