- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我是 python 新手。我正在使用 dask 读取 5 个大型(> 1 GB)csv 文件并将它们合并(类似 SQL)到一个 dask 数据帧中。现在,我正在尝试将合并结果写入单个 csv。我在 dask 数据帧上使用 compute() 将数据收集到单个 df 中,然后调用 to_csv。但是,compute() 在跨所有分区读取数据时速度很慢。我尝试直接在 dask df 上调用 to_csv,它创建了多个 .part 文件(我没有尝试将这些 .part 文件合并到 csv 中)。是否有任何替代方法可以将 dask df 转换为单个 csv 或 compute() 的任何参数以收集数据。我使用的是 6GB 内存和 HDD 以及 i5 处理器。
谢谢
最佳答案
Dask.dataframe 不会写入单个 CSV 文件。正如您提到的,它将写入多个 CSV 文件,每个分区一个文件。您调用 .compute().to_csv(...)
的解决方案会起作用,但是调用 .compute()
会将完整的 dask.dataframe 转换为 Pandas 数据帧,这可能会填满内存。
一个选择是完全避免 Pandas 和 Dask,只从多个文件中读取字节并将它们转储到另一个文件
with open(out_filename, 'w') as outfile:
for in_filename in filenames:
with open(in_filename, 'r') as infile:
# if your csv files have headers then you might want to burn a line here with `next(infile)
for line in infile:
outfile.write(line + '\n')
如果除了将 CSV 文件合并到一个更大的文件之外不需要做任何事情,那么我会这样做,根本不接触 pandas/dask。他们会尝试将 CSV 数据读入内存数据,这需要一段时间,而您不需要这样做。另一方面,如果您需要使用 pandas/dask 进行一些处理,那么我会使用 dask.dataframe 来读取和处理数据,写入许多 csv 文件,然后使用上面的技巧将它们合并。
您还可以考虑写入 CSV 以外的数据存储。 HDF5 和 Parquet 等格式可以更快。 http://dask.pydata.org/en/latest/dataframe-create.html
关于python - 使用 dask 合并 csv 文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42965337/
如果我有一个依赖于某些全局或其他常量的函数,如下所示: x = 123 def f(partition): return partition + x # note that x is def
我们可以通过哪些方式在 Dask Arrays 中执行项目分配?即使是一个非常简单的项目分配,如:a[0] = 2 不起作用。 最佳答案 正确的。这是文档中提到的第一个限制。 通常,涉及 for 循环
[mapr@impetus-i0057 latest_code_deepak]$ dask-worker 172.26.32.37:8786 distributed.nanny - INFO -
我正在构建一个 FastAPI 应用程序,它将为 Dask 数组的 block 提供服务。我想利用 FastAPI's asynchronous functionality旁边Dask-distrib
在延迟数据帧处理的几个阶段之后,我需要在保存数据帧之前对其进行重新分区。但是,.repartition() 方法要求我知道分区的数量(而不是分区的大小),这取决于处理后数据的大小,这是未知的。 我想我
我正在努力转换 dask.bag将字典放入 dask.delayed pandas.DataFrames进入决赛 dask.dataframe 我有一个函数 (make_dict) 将文件读入一个相当
我正在尝试使用 dask_cudf/dask 读取单个大型 parquet 文件(大小 > gpu_size),但它目前正在读取它到一个分区中,我猜这是从文档字符串推断出的预期行为: dask.dat
当启动一个 dask 分布式本地集群时,您可以为 dashboard_address 设置一个随机端口或地址。 如果稍后获取scheduler对象。有没有办法提取仪表板的地址。 我有这个: clust
我有一个 dask 数据框,由 parquet 支持。它有 1.31 亿行,当我对整个帧执行一些基本操作时,它们需要几分钟。 df = dd.read_parquet('data_*.pqt') un
我正在使用 24 个 vCPU 的谷歌云计算实例。运行代码如下 import dask.dataframe as dd from distributed import Client client =
我正在尝试在多台机器上分发一个大型 Dask 数据帧,以便(稍后)在数据帧上进行分布式计算。我为此使用了 dask-distributed。 我看到的所有 dask 分布式示例/文档都是从网络资源(h
我在 Django 服务器后面使用 Dask,这里总结了我的基本设置:https://github.com/MoonVision/django-dask-demo/可以在这里找到 Dask 客户端:h
我有以下格式的 Dask DataFrame: date hour device param value 20190701 21 dev_01 att_1 0.00
我正在尝试使用 dask 而不是 Pandas,因为我有 2.6gb csv 文件。 我加载它,我想删除一列。但似乎无论是 drop 方法 df.drop('column') 或切片 df[ : ,
我有一个比我的内存大得多的文本文件。我想按字典顺序对该文件的行进行排序。我知道如何手动完成: 分成适合内存的块 对块进行排序 合并块 我想用 dask 来做。我认为处理大量数据将是 dask 的一个用
使用 Dask 的分布式调度程序时,我有一个正在远程工作人员上运行的任务,我想停止该任务。 我该如何阻止?我知道取消方法,但如果任务已经开始执行,这似乎不起作用。 最佳答案 如果它还没有运行 如果任务
我需要将一个非常大的 dask.bag 的元素提交到一个非线程安全的存储区,即我需要类似的东西 for x in dbag: store.add(x) 我无法使用compute,因为包太大,无
如果我有一个已经索引的 Dask 数据框 >>> A.divisions (None, None) >>> A.npartitions 1 我想设置分区,到目前为止我正在做 A.reset_index
根据 this回答,如果 Dask 知道数据帧的索引已排序,则 Dask 数据帧可以执行智能索引。 如果索引已排序,我如何让 Dask 知道? 在我的具体情况下,我正在做这样的事情: for sour
我想从具有特定数量的工作人员的 python 启动本地集群,然后将客户端连接到它。 cluster = LocalCluster(n_workers=8, ip='127.0.0.1') client
我是一名优秀的程序员,十分优秀!