- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
对于单元测试,我必须比较两个 pandas DataFrame(具有一列,因此它们也可以转换为系列而不丢失信息)。问题在于一个的索引是日期时间类型,另一个是日期类型。出于我们的目的,两者中的信息是相等的,因为不使用日期时间的时间部分。
要检查单元测试的两个对象是否相等,我可以:
我是否缺少任何比较两者的优雅方法?
代码示例:
from datetime import date, datetime, timedelta
import pandas as pd
days_in_training = 40
start_date = date(2016, 12, 1)
dates = [start_date + timedelta(days=i) for i in range(days_in_training)]
actual = pd.DataFrame({'col1': range(days_in_training)}, index=dates)
start_datetime = datetime(2016, 12, 1)
datetimes = [start_datetime + timedelta(days=i) for i in range(days_in_training)]
expected = pd.DataFrame({'col1': range(days_in_training)}, index=datetimes)
assert(all(actual == expected))
给予:
ValueError: Can only compare identically-labeled DataFrame objects
最佳答案
为了将来引用,通过这篇博文 ( https://penandpants.com/2014/10/07/testing-with-numpy-and-pandas/ ),我找到了函数 pandas.util.testing.assert_frame_equal()
( https://github.com/pandas-dev/pandas/blob/29de89c1d961bea7aa030422b56b061c09255b96/pandas/util/testing.py#L621 )
该函数的测试内容具有一定的灵 active 。此外,它还打印了为什么 DataFrame 可能不被视为相等的摘要,行 assert(all(actual == Expect))
仅返回 True 或 False,这使得调试更加困难。
关于python - 比较两个几乎相等的 Pandas Series/DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40913113/
有时,我倾向于(重复)执行next next a 来获取特定元素。当您需要 2 次或更少的遍历时,这很有效。然而,它很快就会变得很麻烦。对于这个简单的情况,循环的开销太大。 幸运的是,如果您知道位置,
我在使用值为 numpy 数组的 pandas.Series 时遇到了以下奇怪的行为。 % s = pd.Series([5,2], index=[6,7]) %s.loc[6] 5 <-- ret
我有一个看起来像这样的数据框(小版本): A B C 0 125 ADB [AF:12] 1 189 ACB [AF:78, AF:85, AF:98] 2 148 ADB
我在 Pandas (s1) 中创建了一个系列,用于根据原始 DataFrame 中的列 ('d1') 计算这些固定数字 (1-14) 的实例数。我想要的显示在这里(时报); s1 Last
pandas series 有两个密切相关的属性:Series.index 和 Series.index.values。 这两个中的第一个返回某些 pandas 索引类型的当前索引。它是可变的,可用于
我正在尝试使用 KNNClassifier 训练模型。我将数据拆分如下: X_train, X_test, y_train, y_test = train_test_split(X_bow, y, t
我只是尝试对我的数据框进行排序并使用了以下函数: df[df.count >= df.count.quantile(.95)] 返回错误: AttributeError: 'function' obj
我试过了 print(type(numbers[2])) numbers[2].tolist() print(type(numbers[2])) 那是行不通的。我得到了 Numbers 是一个矩阵
我想从时间戳中减去日期。settings.dataset_end_date 是一个 pandas._libs.tslibs.timestamps.Timestamp引用['date_of_patent
我有一个带有数据的 pandas.core.series.Series 0 [00115840, 00110005, 001000033, 00116000... 1 [00267285,
s = pd.Series( nr.randint( 0, 10, 5 ), index=nr.randint(0, 10, 5 ) ) s 输出 1 3 7 6 2 0 9
pandas.DataFrame.query() 方法非常适合在加载或绘图时(预/后)过滤数据。它对于方法链特别方便。 我发现自己经常想将相同的逻辑应用于 pandas.Series,例如在完成诸如返
这个问题在这里已经有了答案: Difference between map, applymap and apply methods in Pandas (11 个回答) 去年关闭。 Series.ma
我正在总结一系列中的值,但根据我如何做,我会得到不同的结果。我试过的两种方法是: sum(df['series']) df['series'].sum() 为什么它们会返回不同的值? 示例代码。 s
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
这个问题在这里已经有了答案: Pandas: select DF rows based on another DF (5 个答案) 关闭 5 年前。 如果我有一个包含开始时间和结束时间的 DataF
我尝试了 Series.index 和 Series.keys() 并且输出是相似的。我找不到它们之间的显着差异。它们是否适用于某些特殊条件? 我在 Anaconda 上的 Jupyter Noteb
我有一个(非常大的)系列,其中包含关键字(例如,每行包含多个由“-”分隔的关键字 In[5]: word_series Out[5]: 0 the-cat-is-pink 1
我需要使用 pandas.read_excel 通过 Python 获取 Excel 电子表格最后一个单元格的值。该单元格包含一个日期,我需要将其分配给 Python 脚本中的变量。格式为2018-1
我是一名优秀的程序员,十分优秀!