gpt4 book ai didi

python - 使用 Pandas 在 Python 中对数据框的行子集进行分组

转载 作者:太空宇宙 更新时间:2023-11-03 15:53:11 26 4
gpt4 key购买 nike

我从包含 30 万行的数据集中获得以下数据框:

    CustomerID  Revenue
0 17850.0 15.30
1 17850.0 11.10
2 13047.0 17.85
3 13047.0 17.85
4 17850.0 20.34
5 13047.0 12.60
6 13047.0 12.60
7 13047.0 31.80
8 17850.0 20.34
9 17850.0 15.30
10 13047.0 9.90
11 13047.0 30.00
12 13047.0 31.80
13 12583.0 40.80
14 12583.0 39.60
15 13047.0 14.85
16 13047.0 14.85
17 12583.0 15.60
18 12583.0 45.00
19 12583.0 70.80

CustomerID 值成批重复。例如,前两行中包含的 CustomerID 值 17850 稍后可能会在数据集中的某个时间点再次出现。我正在尝试按相同的客户 ID 对行的子集进行分组,并汇总该行的收入。我想做的数据框转换应该是这样的:

   CustomerID   TotalRevenue
0 17850.0 26.40
1 13047.0 35.70
2 17850.0 20.34
3 13047.0 57.0
4 17850.0 35.64
5 13047.0 71.7
6 12583.0 80.4
7 13047.0 29.7
8 12583.0 131.4

问题是,如果我使用 groupby 方法,它会将具有相同 CustomerID 值的所有行分组。因此,通过这种方式,它将整个数据框中的所有 17850 个 CustomerID 值组合在一起,而不仅仅是前 2 行的一堆,然后是其他 CustomerID 值的后续串。

非常感谢您提供有关如何使用 Pandas 执行此操作的帮助。谢谢

最佳答案

df.groupby(['CustomerID',df.CustomerID.diff().ne(0).cumsum()],sort=False)['Revenue'].sum().rename_axis(['CustomerID','GID']).reset_index().drop('GID',axis=1)

输出:

   CustomerID  Revenue
0 17850.0 26.40
1 13047.0 35.70
2 17850.0 20.34
3 13047.0 57.00
4 17850.0 35.64
5 13047.0 71.70
6 12583.0 80.40
7 13047.0 29.70
8 12583.0 131.40

关于python - 使用 Pandas 在 Python 中对数据框的行子集进行分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45285371/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com