我有包含字段 last_payout
和 amount
的数据框。我需要对每个月的所有 amount
求和并绘制输出。
df[['last_payout','amount']].dtypes
last_payout datetime64[ns]
amount float64
dtype: object
-
df[['last_payout','amount']].head
<bound method NDFrame.head of last_payout amount
0 2017-02-14 11:00:06 23401.0
1 2017-02-14 11:00:06 1444.0
2 2017-02-14 11:00:06 0.0
3 2017-02-14 11:00:06 0.0
4 2017-02-14 11:00:06 290083.0
我使用了 jezrael 的 answer 中的代码绘制每月的交易数量。
(df.loc[df['last_payout'].dt.year.between(2016, 2017), 'last_payout']
.dt.to_period('M')
.value_counts()
.sort_index()
.plot(kind="bar")
)
每月交易次数:
如何对每个月的所有 amount
求和并绘制输出?我应该如何扩展上面的代码来做到这一点?
我尝试实现 .sum
但没有成功。
PeriodIndex解决方案:
groupby
按 月
期间 to_period
并聚合 sum
:
df['amount'].groupby(df['last_payout'].dt.to_period('M')).sum().plot(kind='bar')
DatetimeIndex解决方案:
使用resample
按 月
(M
) 或月初 (MS
) 汇总 sum
:
s = df.resample('M', on='last_payout')['amount'].sum()
#alternative
#s = df.groupby(pd.Grouper(freq='M', key='last_payout'))['amount'].sum()
print (s)
last_payout
2017-02-28 23401.0
2017-03-31 1444.0
2017-04-30 290083.0
Freq: M, Name: amount, dtype: float64
或者:
s = df.resample('MS', on='last_payout')['amount'].sum()
#s = df.groupby(pd.Grouper(freq='MS', key='last_payout'))['amount'].sum()
print (s)
last_payout
2017-02-01 23401.0
2017-03-01 1444.0
2017-04-01 290083.0
Freq: MS, Name: amount, dtype: float64
然后是必要的格式x
标签:
ax = s.plot(kind='bar')
ax.set_xticklabels(s.index.strftime('%Y-%m'))
设置:
import pandas as pd
temp=u"""last_payout,amount
2017-02-14 11:00:06,23401.0
2017-03-14 11:00:06,1444.0
2017-03-14 11:00:06,0.0
2017-04-14 11:00:06,0.0
2017-04-14 11:00:06,290083.0"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), parse_dates=[0])
print (df)
last_payout amount
0 2017-02-14 11:00:06 23401.0
1 2017-03-14 11:00:06 1444.0
2 2017-03-14 11:00:06 0.0
3 2017-04-14 11:00:06 0.0
4 2017-04-14 11:00:06 290083.0
我是一名优秀的程序员,十分优秀!