gpt4 book ai didi

python - 如何使用 sklearn 管道和 FeatureUnion 选择多个(数字和文本)列进行文本分类?

转载 作者:太空宇宙 更新时间:2023-11-03 15:43:35 24 4
gpt4 key购买 nike

我开发了一个用于多标签分类的文本模型。 OneVsRestClassifier LinearSVC 模型使用 sklearns PipelineFeatureUnion 进行模型准备。

主要输入特征包括一个名为 response 的文本列,还有 5 个主题概率(从以前的 LDA 主题模型生成)称为 t1_prob - t5_prob 来预测 5 个可能的标签。在生成 TfidfVectorizer 的管道中还有其他特征创建步骤。

我最终用 ItemSelector 调用了每一列并对这些主题概率列分别执行 ArrayCaster(参见下面的函数定义代码)5 次。有没有更好的方法来使用 FeatureUnion选择管道中的多个列? (所以我不必做 5 次)

我想知道是否有必要复制 topic1_feature -topic5_feature 代码,或者是否可以以更简洁的方式选择多个列?

我输入的数据是 Pandas dataFrame:

id response label_1 label_2 label3  label_4 label_5     t1_prob t2_prob t3_prob t4_prob t5_prob
1 Text from response... 0.0 0.0 0.0 0.0 0.0 0.0 0.0625 0.0625 0.1875 0.0625 0.1250
2 Text to model with... 0.0 0.0 0.0 0.0 0.0 0.0 0.1333 0.1333 0.0667 0.0667 0.0667
3 Text to work with ... 0.0 0.0 0.0 0.0 0.0 0.0 0.1111 0.0938 0.0393 0.0198 0.2759
4 Free text comments ... 0.0 0.0 1.0 1.0 0.0 0.0 0.2162 0.1104 0.0341 0.0847 0.0559

x_train 是response 和 5 个主题概率列(t1_prob、t2_prob、t3_prob、t4_prob、t5_prob)。

y_train 是 5 个 label 列,我调用了 .values 以返回 DataFrame 的 numpy 表示。 (label_1, label_2, label3, label_4, label_5)

示例数据框:

import pandas as pd
column_headers = ["id", "response",
"label_1", "label_2", "label3", "label_4", "label_5",
"t1_prob", "t2_prob", "t3_prob", "t4_prob", "t5_prob"]

input_data = [
[1, "Text from response",0.0,0.0,1.0,0.0,0.0,0.0625,0.0625,0.1875,0.0625,0.1250],
[2, "Text to model with",0.0,0.0,0.0,0.0,0.0,0.1333,0.1333,0.0667,0.0667,0.0667],
[3, "Text to work with",0.0,0.0,0.0,0.0,0.0,0.1111,0.0938,0.0393,0.0198,0.2759],
[4, "Free text comments",0.0,0.0,1.0,1.0,1.0,0.2162,0.1104,0.0341,0.0847,0.0559]
]

df = pd.DataFrame(input_data, columns = column_headers)
df = df.set_index('id')
df

我认为我的实现有点绕,因为 FeatureUnion 只会在组合二维数组时处理它们,所以任何其他类型(如 DataFrame)对我来说都是有问题的。但是,这个示例有效——我只是在寻找改进它并使其更干的方法。

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.base import BaseEstimator, TransformerMixin

class ItemSelector(BaseEstimator, TransformerMixin):
def __init__(self, column):
self.column = column

def fit(self, X, y=None):
return self

def transform(self, X, y=None):
return X[self.column]

class ArrayCaster(BaseEstimator, TransformerMixin):
def fit(self, x, y=None):
return self

def transform(self, data):
return np.transpose(np.matrix(data))


def basic_text_model(trainX, testX, trainY, testY, classLabels, plotPath):
'''OneVsRestClassifier for multi-label prediction'''
pipeline = Pipeline([
('features', FeatureUnion([
('topic1_feature', Pipeline([
('selector', ItemSelector(column='t1_prob')),
('caster', ArrayCaster())
])),
('topic2_feature', Pipeline([
('selector', ItemSelector(column='t2_prob')),
('caster', ArrayCaster())
])),
('topic3_feature', Pipeline([
('selector', ItemSelector(column='t3_prob')),
('caster', ArrayCaster())
])),
('topic4_feature', Pipeline([
('selector', ItemSelector(column='t4_prob')),
('caster', ArrayCaster())
])),
('topic5_feature', Pipeline([
('selector', ItemSelector(column='t5_prob')),
('caster', ArrayCaster())
])),
('word_features', Pipeline([
('vect', CountVectorizer(analyzer="word", stop_words='english')),
('tfidf', TfidfTransformer(use_idf = True)),
])),
])),
('clf', OneVsRestClassifier(svm.LinearSVC(random_state=random_state)))
])

# Fit the model
pipeline.fit(trainX, trainY)
predicted = pipeline.predict(testX)

我将 ArrayCaster 纳入流程的原因是这个 answer .

最佳答案

我使用 FunctionTransformer 找到了这个问题的答案灵感来自@Marcus V 对此 question 的解决方案.修改后的管道更加简洁。

from sklearn.preprocessing import FunctionTransformer

get_numeric_data = FunctionTransformer(lambda x: x[['t1_prob', 't2_prob', 't3_prob', 't4_prob', 't5_prob']], validate=False)

pipeline = Pipeline(
[
(
"features",
FeatureUnion(
[
("numeric_features", Pipeline([("selector", get_numeric_data)])),
(
"word_features",
Pipeline(
[
("vect", CountVectorizer(analyzer="word", stop_words="english")),
("tfidf", TfidfTransformer(use_idf=True)),
]
),
),
]
),
),
("clf", OneVsRestClassifier(svm.LinearSVC(random_state=10))),
]
)

关于python - 如何使用 sklearn 管道和 FeatureUnion 选择多个(数字和文本)列进行文本分类?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51327856/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com