- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在与一个项目作斗争,该项目从标签中获取非常清晰的字体图像,例如读取“文本区域”并使用 OCR tesseract 将其输出为字符串。
现在我在这件事上取得了相当大的进展,因为我添加了各种全局过滤器以获得非常清晰的结果,但我正在努力寻找仅过滤文本的方法,然后你必须考虑将它旋转到尽可能水平,然后简单的部分应该是裁剪它。
如果我只使用 rasdpberry pi 来进行计算,我是否可以知道如何做到这一点而不使用训练数据并使系统过于复杂?
感谢您的帮助,这是我到目前为止所想出的:
原始图像(从 PiCamera 捕获):
阴影去除后的自适应阈值:
[
去除阴影后的 Glocad tresh:
代码如下:
# import the necessary packages
from PIL import Image
import pytesseract
import argparse
import cv2
import os
import picamera
import time
import numpy as np
#preprocess = "tresh"
#Remaining textcorping and rotating:
import math
import json
from collections import defaultdict
from scipy.ndimage.filters import rank_filter
def dilate(ary, N, iterations):
"""Dilate using an NxN '+' sign shape. ary is np.uint8."""
kernel = np.zeros((N,N), dtype=np.uint8)
kernel[(N-1)/2,:] = 1
dilated_image = cv2.dilate(ary / 255, kernel, iterations=iterations)
kernel = np.zeros((N,N), dtype=np.uint8)
kernel[:,(N-1)/2] = 1
dilated_image = cv2.dilate(dilated_image, kernel, iterations=iterations)
return dilated_image
def props_for_contours(contours, ary):
"""Calculate bounding box & the number of set pixels for each contour."""
c_info = []
for c in contours:
x,y,w,h = cv2.boundingRect(c)
c_im = np.zeros(ary.shape)
cv2.drawContours(c_im, [c], 0, 255, -1)
c_info.append({
'x1': x,
'y1': y,
'x2': x + w - 1,
'y2': y + h - 1,
'sum': np.sum(ary * (c_im > 0))/255
})
return c_info
def union_crops(crop1, crop2):
"""Union two (x1, y1, x2, y2) rects."""
x11, y11, x21, y21 = crop1
x12, y12, x22, y22 = crop2
return min(x11, x12), min(y11, y12), max(x21, x22), max(y21, y22)
def intersect_crops(crop1, crop2):
x11, y11, x21, y21 = crop1
x12, y12, x22, y22 = crop2
return max(x11, x12), max(y11, y12), min(x21, x22), min(y21, y22)
def crop_area(crop):
x1, y1, x2, y2 = crop
return max(0, x2 - x1) * max(0, y2 - y1)
def find_border_components(contours, ary):
borders = []
area = ary.shape[0] * ary.shape[1]
for i, c in enumerate(contours):
x,y,w,h = cv2.boundingRect(c)
if w * h > 0.5 * area:
borders.append((i, x, y, x + w - 1, y + h - 1))
return borders
def angle_from_right(deg):
return min(deg % 90, 90 - (deg % 90))
def remove_border(contour, ary):
"""Remove everything outside a border contour."""
# Use a rotated rectangle (should be a good approximation of a border).
# If it's far from a right angle, it's probably two sides of a border and
# we should use the bounding box instead.
c_im = np.zeros(ary.shape)
r = cv2.minAreaRect(contour)
degs = r[2]
if angle_from_right(degs) <= 10.0:
box = cv2.cv.BoxPoints(r)
box = np.int0(box)
cv2.drawContours(c_im, [box], 0, 255, -1)
cv2.drawContours(c_im, [box], 0, 0, 4)
else:
x1, y1, x2, y2 = cv2.boundingRect(contour)
cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1)
cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4)
return np.minimum(c_im, ary)
def find_components(edges, max_components=16):
"""Dilate the image until there are just a few connected components.
Returns contours for these components."""
# Perform increasingly aggressive dilation until there are just a few
# connected components.
count = 21
dilation = 5
n = 1
while count > 16:
n += 1
dilated_image = dilate(edges, N=3, iterations=n)
contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
count = len(contours)
#print dilation
#Image.fromarray(edges).show()
#Image.fromarray(255 * dilated_image).show()
return contours
def find_optimal_components_subset(contours, edges):
"""Find a crop which strikes a good balance of coverage/compactness.
Returns an (x1, y1, x2, y2) tuple.
"""
c_info = props_for_contours(contours, edges)
c_info.sort(key=lambda x: -x['sum'])
total = np.sum(edges) / 255
area = edges.shape[0] * edges.shape[1]
c = c_info[0]
del c_info[0]
this_crop = c['x1'], c['y1'], c['x2'], c['y2']
crop = this_crop
covered_sum = c['sum']
while covered_sum < total:
changed = False
recall = 1.0 * covered_sum / total
prec = 1 - 1.0 * crop_area(crop) / area
f1 = 2 * (prec * recall / (prec + recall))
#print '----'
for i, c in enumerate(c_info):
this_crop = c['x1'], c['y1'], c['x2'], c['y2']
new_crop = union_crops(crop, this_crop)
new_sum = covered_sum + c['sum']
new_recall = 1.0 * new_sum / total
new_prec = 1 - 1.0 * crop_area(new_crop) / area
new_f1 = 2 * new_prec * new_recall / (new_prec + new_recall)
# Add this crop if it improves f1 score,
# _or_ it adds 25% of the remaining pixels for <15% crop expansion.
# ^^^ very ad-hoc! make this smoother
remaining_frac = c['sum'] / (total - covered_sum)
new_area_frac = 1.0 * crop_area(new_crop) / crop_area(crop) - 1
if new_f1 > f1 or (
remaining_frac > 0.25 and new_area_frac < 0.15):
print '%d %s -> %s / %s (%s), %s -> %s / %s (%s), %s -> %s' % (
i, covered_sum, new_sum, total, remaining_frac,
crop_area(crop), crop_area(new_crop), area, new_area_frac,
f1, new_f1)
crop = new_crop
covered_sum = new_sum
del c_info[i]
changed = True
break
if not changed:
break
return crop
def pad_crop(crop, contours, edges, border_contour, pad_px=15):
"""Slightly expand the crop to get full contours.
This will expand to include any contours it currently intersects, but will
not expand past a border.
"""
bx1, by1, bx2, by2 = 0, 0, edges.shape[0], edges.shape[1]
if border_contour is not None and len(border_contour) > 0:
c = props_for_contours([border_contour], edges)[0]
bx1, by1, bx2, by2 = c['x1'] + 5, c['y1'] + 5, c['x2'] - 5, c['y2'] - 5
def crop_in_border(crop):
x1, y1, x2, y2 = crop
x1 = max(x1 - pad_px, bx1)
y1 = max(y1 - pad_px, by1)
x2 = min(x2 + pad_px, bx2)
y2 = min(y2 + pad_px, by2)
return crop
crop = crop_in_border(crop)
c_info = props_for_contours(contours, edges)
changed = False
for c in c_info:
this_crop = c['x1'], c['y1'], c['x2'], c['y2']
this_area = crop_area(this_crop)
int_area = crop_area(intersect_crops(crop, this_crop))
new_crop = crop_in_border(union_crops(crop, this_crop))
if 0 < int_area < this_area and crop != new_crop:
print '%s -> %s' % (str(crop), str(new_crop))
changed = True
crop = new_crop
if changed:
return pad_crop(crop, contours, edges, border_contour, pad_px)
else:
return crop
def downscale_image(im, max_dim=2048):
"""Shrink im until its longest dimension is <= max_dim.
Returns new_image, scale (where scale <= 1).
"""
a, b = im.size
if max(a, b) <= max_dim:
return 1.0, im
scale = 1.0 * max_dim / max(a, b)
new_im = im.resize((int(a * scale), int(b * scale)), Image.ANTIALIAS)
return scale, new_im
def process_image(inputImg):
opnImg = Image.open(inputImg)
scale, im = downscale_image(opnImg)
edges = cv2.Canny(np.asarray(im), 100, 200)
# TODO: dilate image _before_ finding a border. This is crazy sensitive!
contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
borders = find_border_components(contours, edges)
borders.sort(key=lambda (i, x1, y1, x2, y2): (x2 - x1) * (y2 - y1))
border_contour = None
if len(borders):
border_contour = contours[borders[0][0]]
edges = remove_border(border_contour, edges)
edges = 255 * (edges > 0).astype(np.uint8)
# Remove ~1px borders using a rank filter.
maxed_rows = rank_filter(edges, -4, size=(1, 20))
maxed_cols = rank_filter(edges, -4, size=(20, 1))
debordered = np.minimum(np.minimum(edges, maxed_rows), maxed_cols)
edges = debordered
contours = find_components(edges)
if len(contours) == 0:
print '%s -> (no text!)' % path
return
crop = find_optimal_components_subset(contours, edges)
crop = pad_crop(crop, contours, edges, border_contour)
crop = [int(x / scale) for x in crop] # upscale to the original image size.
#draw = ImageDraw.Draw(im)
#c_info = props_for_contours(contours, edges)
#for c in c_info:
# this_crop = c['x1'], c['y1'], c['x2'], c['y2']
# draw.rectangle(this_crop, outline='blue')
#draw.rectangle(crop, outline='red')
#im.save(out_path)
#draw.text((50, 50), path, fill='red')
#orig_im.save(out_path)
#im.show()
text_im = opnImg.crop(crop)
text_im.save('Cropted_and_rotated_image.jpg')
return text_im
'''
text_im.save(out_path)
print '%s -> %s' % (path, out_path)
'''
#Camera capturing stuff:
myCamera = picamera.PiCamera()
myCamera.vflip = True
myCamera.hflip = True
'''
myCamera.start_preview()
time.sleep(6)
myCamera.stop_preview()
'''
myCamera.capture("Captured_Image.png")
#End capturing persidure
imgAddr = '/home/pi/My_examples/Mechanical_display_converter/Example1.jpg'
#imgAddr = "Captured_Image.png"
# construct the argument parse and parse the arguments
#ap = argparse.ArgumentParser()
'''
ap.add_argument("-i", "--image", required=True,
help="path to input image to be OCR'd")
ap.add_argument("-p", "--preprocess", type=str, default="thresh",
help="type of preprocessing to be done")
args = vars(ap.parse_args())
'''
# load the example image and convert it to grayscale
img = cv2.imread(imgAddr)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('Step1_gray_filter', gray)
'''
# check to see if we should apply thresholding to preprocess the
# image
if args["preprocess"] == "thresh":
gray = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# make a check to see if median blurring should be done to remove
# noise
elif args["preprocess"] == "blur":
gray = cv2.medianBlur(gray, 3)
if preprocess == "thresh":
gray = cv2.threshold(gray, 150, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# make a check to see if median blurring should be done to remove
# noise
elif preprocess == "blur":
gray = cv2.medianBlur(gray, 3)
'''
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
cv2.imshow('shadows_out.png', result)
cv2.imshow('shadows_out_norm.png', result_norm)
grayUnShadowedImg = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
cv2.imshow('Shadow_Gray_CVT', grayUnShadowedImg)
ret, threshUnShadowedImg = cv2.threshold(grayUnShadowedImg, 200, 255, cv2.THRESH_BINARY)
cv2.imshow('unShadowed_Thresh_filtering', threshUnShadowedImg)
#v2.imwrite('unShadowed_Thresh_filtering.jpg', threshUnShadowedImg)
#croptedunShadowedImg = process_image('unShadowed_Thresh_filtering.jpg')
adptThreshUnShadowedImg = cv2.adaptiveThreshold(grayUnShadowedImg, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
cv2.imshow('unShadowed_Adaptive_Thresh_filtering', adptThreshUnShadowedImg)
'''
blurFImg = cv2.GaussianBlur(adptThreshUnShadowedImg,(25,25), 0)
ret, f3Img = cv2.threshold(blurFImg,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow('f3Img', f3Img )
'''
#OCR Stage:
'''
# write the grayscale image to disk as a temporary file so we can
# apply OCR to it
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, threshImg)
# load the image as a PIL/Pillow image, apply OCR, and then delete
# the temporary file
text = pytesseract.image_to_string(Image.open(filename))
os.remove(filename)
print("\n" + text)
'''
cv2.waitKey(0)
cv2.destroyAllWindows()
也尝试了这个来源,但这似乎不起作用,而且理解起来不是很清楚:
最佳答案
我已经举了一个例子,也许可以让您了解如何进行。我在没有你对图像进行转换的情况下完成了它,但如果你愿意,你可以使用它们来完成。
我所做的是首先使用 cv2.THRESH_BINARY
将图像转换为二进制。接下来,我制作了一个 mask 并通过使用大小 (cv2.contourArea()
) 和比率(从 cv2.boundingRect()
获取)限制它们来绘制轮廓作为阈值。然后我使用 cv2.morphologyEx()
和一个大内核大小 (50x50) 将所有彼此靠近的轮廓连接起来。
然后我选择了最大的轮廓(文本)并使用 cv2.minAreaRect()
绘制了一个旋转的矩形,这让我得到了旋转角度。
然后我可以使用 cv2.getRotationMatrix2D()
和 cv2.warpAffine()
旋转图像,并使用最高的 X、Y 和最低的 X、Y 获得稍大的边界框我用来裁剪图像的旋转矩形的 X、Y 值。
然后我再次搜索轮廓并从图像中去除噪声(小轮廓),结果是具有高对比度的文本。
最终结果:
此代码仅用于提供一个想法或对问题的另一种观点,它可能不适用于其他图像(如果它们与原始图像差异太大)或者至少您必须调整代码的某些参数.希望能帮助到你。干杯!
代码:
import cv2
import numpy as np
# Read image and search for contours.
img = cv2.imread('rotatec.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, threshold = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(threshold,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
# Create first mask used for rotation.
mask = np.ones(img.shape, np.uint8)*255
# Draw contours on the mask with size and ratio of borders for threshold.
for cnt in contours:
size = cv2.contourArea(cnt)
x,y,w,h = cv2.boundingRect(cnt)
if 10000 > size > 500 and w*2.5 > h:
cv2.drawContours(mask, [cnt], -1, (0,0,0), -1)
# Connect neighbour contours and select the biggest one (text).
kernel = np.ones((50,50),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
gray_op = cv2.cvtColor(opening, cv2.COLOR_BGR2GRAY)
_, threshold_op = cv2.threshold(gray_op, 150, 255, cv2.THRESH_BINARY_INV)
contours_op, hierarchy_op = cv2.findContours(threshold_op, cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours_op, key=cv2.contourArea)
# Create rotated rectangle to get the angle of rotation and the 4 points of the rectangle.
_, _, angle = rect = cv2.minAreaRect(cnt)
(h,w) = img.shape[:2]
(center) = (w//2,h//2)
# Rotate the image.
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (int(w),int(h)), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT)
# Create bounding box for rotated text (use old points of rotated rectangle).
box = cv2.boxPoints(rect)
a, b, c, d = box = np.int0(box)
bound =[]
bound.append(a)
bound.append(b)
bound.append(c)
bound.append(d)
bound = np.array(bound)
(x1, y1) = (bound[:,0].min(), bound[:,1].min())
(x2, y2) = (bound[:,0].max(), bound[:,1].max())
cv2.drawContours(img,[box],0,(0,0,255),2)
# Crop the image and create new mask for the final image.
rotated = rotated[y1:y2, x1:x2]
mask_final = np.ones(rotated.shape, np.uint8)*255
# Remove noise from the final image.
gray_r = cv2.cvtColor(rotated, cv2.COLOR_BGR2GRAY)
_, threshold_r = cv2.threshold(gray_r, 150, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(threshold_r,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
for cnt in contours:
size = cv2.contourArea(cnt)
if size < 500:
cv2.drawContours(threshold_r, [cnt], -1, (0,0,0), -1)
# Invert black and white.
final_image = cv2.bitwise_not(threshold_r)
# Display results.
cv2.imshow('final', final_image)
cv2.imshow('rotated', rotated)
编辑:
对于文本识别,我建议您查看来自 SO Simple Digit Recognition OCR in OpenCV-Python 的这篇帖子.
使用上述帖子中的代码的结果:
编辑:
这是我的代码,是用上述帖子中的略微修改后的代码实现的。所有步骤都写在评论里。您应该将脚本和训练图像保存到同一目录。这是我的训练图像:
代码:
import cv2
import numpy as np
# Read image and search for contours.
img = cv2.imread('rotatec.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, threshold = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(threshold,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
# Create first mask used for rotation.
mask = np.ones(img.shape, np.uint8)*255
# Draw contours on the mask with size and ratio of borders for threshold.
for cnt in contours:
size = cv2.contourArea(cnt)
x,y,w,h = cv2.boundingRect(cnt)
if 10000 > size > 500 and w*2.5 > h:
cv2.drawContours(mask, [cnt], -1, (0,0,0), -1)
# Connect neighbour contours and select the biggest one (text).
kernel = np.ones((50,50),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
gray_op = cv2.cvtColor(opening, cv2.COLOR_BGR2GRAY)
_, threshold_op = cv2.threshold(gray_op, 150, 255, cv2.THRESH_BINARY_INV)
contours_op, hierarchy_op = cv2.findContours(threshold_op, cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours_op, key=cv2.contourArea)
# Create rotated rectangle to get the angle of rotation and the 4 points of the rectangle.
_, _, angle = rect = cv2.minAreaRect(cnt)
(h,w) = img.shape[:2]
(center) = (w//2,h//2)
# Rotate the image.
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (int(w),int(h)), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT)
# Create bounding box for rotated text (use old points of rotated rectangle).
box = cv2.boxPoints(rect)
a, b, c, d = box = np.int0(box)
bound =[]
bound.append(a)
bound.append(b)
bound.append(c)
bound.append(d)
bound = np.array(bound)
(x1, y1) = (bound[:,0].min(), bound[:,1].min())
(x2, y2) = (bound[:,0].max(), bound[:,1].max())
cv2.drawContours(img,[box],0,(0,0,255),2)
# Crop the image and create new mask for the final image.
rotated = rotated[y1:y2, x1-10:x2]
mask_final = np.ones(rotated.shape, np.uint8)*255
# Remove noise from the final image.
gray_r = cv2.cvtColor(rotated, cv2.COLOR_BGR2GRAY)
_, threshold_r = cv2.threshold(gray_r, 150, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(threshold_r,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
for cnt in contours:
size = cv2.contourArea(cnt)
if size < 500:
cv2.drawContours(threshold_r, [cnt], -1, (0,0,0), -1)
# Invert black and white.
final_image = cv2.bitwise_not(threshold_r)
# Display results.
cv2.imwrite('rotated12.png', final_image)
# Import module for finding path to database.
from pathlib import Path
# This code executes once amd writes two files.
# If file exists it skips this step, else it runs again.
file = Path("generalresponses.data")
if file.is_file() == False:
# Reading the training image
im = cv2.imread('pitrain1.png')
im3 = im.copy()
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2)
# Finding contour
_,contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# Creates array and list for appending data
samples = np.empty((0,100))
responses = []
# Value serving to increment the "automatic" learning
i = 0
# Iterating through contours and appending the array and list with "learned" values
for cnt in contours:
i+=1
[x,y,w,h] = cv2.boundingRect(cnt)
cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2)
roi = thresh[y:y+h,x:x+w] # Croping ROI to bounding rectangle
roismall = cv2.resize(roi,(10,10)) # Resizing ROI to smaller image
cv2.imshow('norm',im)
# Appending values based on the pitrain1.png image
if i < 36:
responses.append(int(45))
elif 35 < i < 80:
responses.append(int(48))
elif 79 < i < 125:
responses.append(int(57))
elif 124 < i < 160:
responses.append(int(56))
elif 159 < i < 205:
responses.append(int(55))
elif 204 < i < 250:
responses.append(int(54))
elif 249 < i < 295:
responses.append(int(53))
elif 294 < i < 340:
responses.append(int(52))
elif 339 < i < 385:
responses.append(int(51))
elif 384 < i < 430:
responses.append(int(50))
elif 429 < i < 485:
responses.append(int(49))
else:
break
sample = roismall.reshape((1,100))
samples = np.append(samples,sample,0)
# Reshaping and saving database
responses = np.array(responses)
responses = responses.reshape((responses.size,1))
print('end')
np.savetxt('generalsamples.data',samples)
np.savetxt('generalresponses.data',responses, fmt='%s')
################### Recognition ########################
# Dictionary for numbers and characters (in this sample code the only
# character is " - ")
number = {
48 : "0",
53 : "5",
52 : "4",
50 : "2",
45 : "-",
55 : "7",
51 : "3",
57 : "9",
56 : "8",
54 : "6",
49 : "1"
}
####### training part ###############
samples = np.loadtxt('generalsamples.data',np.float32)
responses = np.loadtxt('generalresponses.data',np.float32)
responses = responses.reshape((responses.size,1))
model = cv2.ml.KNearest_create()
model.train(samples,cv2.ml.ROW_SAMPLE,responses)
############################# testing part #########################
im = cv2.imread('rotated12.png')
out = np.zeros(im.shape,np.uint8)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
[x,y,w,h] = cv2.boundingRect(cnt)
cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2)
roi = thresh[y:y+h,x:x+w]
roismall = cv2.resize(roi,(10,10))
roismall = roismall.reshape((1,100))
roismall = np.float32(roismall)
retval, results, neigh_resp, dists = model.findNearest(roismall,k=5)
string = int((results[0][0]))
string2 = number.get(string)
print(string2)
cv2.putText(out,str(string2),(x,y+h),0,1,(0,255,0))
cv2.imshow('im',im)
cv2.imshow('out',out)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
关于python - 如何在openCV,python中找到旋转和裁剪一段文本,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51699779/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!