gpt4 book ai didi

python - 在python中使用蒙特卡洛方法

转载 作者:太空宇宙 更新时间:2023-11-03 15:41:05 25 4
gpt4 key购买 nike

我正在处理下图中所写问题的第一个版本。我使用 rand 命令生成了一个随机点,并测试了该点是否在圆圈内。我的代码是否接受蒙特卡洛函数的数量作为输入值?我相信我选择了 N,点数足够小,这样我就不会耗尽内存。此外,当我运行这段代码时,它运行时没有任何错误,但图表没有显示出来。在我可能出错的地方寻求帮助。

enter image description here

import numpy as np
import matplotlib.pyplot as plt
from random import random

xinside = []
yinside = []
xoutside = []
youtside = []

insidecircle = 0
totalpoints = 10**3

for _ in range(totalpoints):
x = random()
y = random()
if x**2+y**2 <= 1:
insidecircle += 1
xinside.append(x)
yinside.append(y)
else:
xoutside.append(x)
youtside.append(y)

fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.scatter(xinside, yinside, color='g', marker='s')
ax.scatter(xoutside, youtside, color='r', marker='s')
fig.show()

最佳答案

没有显示的图表很神秘,也许试试plt.show()。或者,您可以使用 savefig 保存绘图。这是代码第一部分的工作函数(只需修改问题中发布的代码)以及所需的输出图。

import numpy as np
import matplotlib.pyplot as plt
from random import random

def monte_carlo(n_points):
xin, yin, xout, yout = [[] for _ in range(4)] # Defining all 4 lists together
insidecircle = 0

for _ in range(n_points):
x = random()
y = random()
if x**2+y**2 <= 1:
insidecircle += 1
xin.append(x)
yin.append(y)
else:
xout.append(x)
yout.append(y)

print ("The estimated value of Pi for N = %d is %.4f" %(n_points, 4*insidecircle/n_points))

fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.scatter(xin, yin, color='g', marker='o', s=4)
ax.scatter(xout, yout, color='r', marker='o', s=4)
plt.savefig('monte_carlo.png')

n_points = 10**4
monte_carlo(n_points)

> The estimated value of Pi for N = 10000 is 3.1380

enter image description here

矢量化方法 如果您在函数中排除print 语句,您可以将其称为单行代码。我把时间分析留作你的作业

import numpy as np
import matplotlib.pyplot as plt

def monte_carlo(n_points, x, y):
pi_vec = 4*(x**2 + y**2 <= 1).sum()/n_points
print ("The estimated value of Pi for N = %d is %.4f" %(n_points, pi_vec))

# Generate points
n_points = 10**4
x = np.random.random(n_points)
y = np.random.random(n_points)
# x = [random() for _ in range(n_points)] # alternative way to define x
# y = [random() for _ in range(n_points)] # alternative way to define y

# Call function
monte_carlo(n_points, x, y)

> The estimated value of Pi for N = 10000 is 3.1284

或者,您可以通过使用单个 x 和 y 点数组来摆脱两个变量 xy,如下所示:

pts = np.random.uniform(0, 1, 2*n_points).reshape((n_points, 2))
monte_carlo(n_points, pts) # Function will be def monte_carlo(n_points, pts):

并在函数中使用

pi_vec = 4*(pts[:,0]**2 + pts[:,1]**2 <= 1).sum()/n_points

关于python - 在python中使用蒙特卡洛方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52484901/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com