- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
keras 存在一些问题。我只是想构建模型并让它运行,然后进行调整。也就是说,我只使用 99 个图像和 99 个标签。作为引用,我使用它来给我一个连续的输出,而不仅仅是一个类标签。下面是我正在使用的代码。首先,我有一个导入所有数据的脚本。 99 张图像和 99 个标签。
当我开始拟合模型零件时,它给我带来了一个错误。 “ValueError:检查模型目标时出错:预期cropping2d_1 有 4 个维度,但得到形状为 (99, 1) 的数组”。
我阅读了一些有关类似错误的其他线程,看起来这可能是我发送 keras 的数组的顺序。我尝试了一下并得到了以下结果。目前图像数组的形状是(99,160,320,3)。我尝试将 keras 中的“input_shape”的顺序更改为(3,160,320)。这给了我错误“ValueError:检查模型输入时出错:预期cropping2d_input_1具有形状(无,3,160,320)但得到了形状为(99,160,320,3)的数组”。然后我相应地重新调整 images_center 数组,得到与上面相同的错误。
为了保持简短,我省略了导入语句。
对下一步有什么想法吗?
#Import col 3 to get a length of the dataset
df = pd.read_csv('/Users/user/Desktop/data/driving_log.csv',usecols=[3])
#import and make a matrix of the file paths and data
f = open('/Users/user/Desktop/data/driving_log.csv')
csv_f = csv.reader(f)
m=[]
for row in csv_f:
n=(row)
m.append(n)
#Create labels data
labels=[]
for i in range(1,100):
label=(m[i][3])
labels.append(label)
list1=[]
for i in range(len(labels)):
ix=float(labels[i])
list1.append(ix)
labels=list1
labels=np.array(labels)
#Create features data
#Loop through file paths, combine base path with folder path then read in and append
images_center=[]
for i in range(1,100):
img=(m[i][0])
img=img.lstrip()
path='/Users/user/Desktop/data/'
img=path+img
image=cv2.imread(img)
images_center.append(image)
images_center=np.array(images_center)
print(images_center.shape)
# Fix error with TF and Keras
import tensorflow as tf
tf.python.control_flow_ops = tf
print(images_center.shape)
model = Sequential()
model.add(Convolution2D(16,3,3,border_mode='valid',input_shape=(160,320,3)))
model.compile('adam','categorical_crossentropy',['accuracy'])
history=model.fit(images_center,labels,nb_epoch=10,validation_split=0.2)
最佳答案
您的标签(即“目标”)的形状为 (99, 1),因此网络应产生相同形状的输出。尝试在末尾添加一个全连接层,例如 model.add(Dense(1))
。
关于python - Keras 模型的矩阵大小错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42308481/
假设我有两个矩阵,每个矩阵有两列和不同的行数。我想检查并查看一个矩阵的哪些对在另一个矩阵中。如果这些是一维的,我通常只会做 a %in% x得到我的结果。 match似乎只适用于向量。 > a
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 个月前。 Improv
我只处理过 DirectX 矩阵 我读过一些文章,说不能将 DirectX 矩阵数学库用于 openGL 矩阵。 但我也读过,如果你的数学是一致的,你可以获得类似的结果。那只会让我更加困惑。 任何人都
我编写了一个C++代码来解决线性系统A.x = b,其中A是一个对称矩阵,方法是首先使用LAPACK(E)对角矩阵A = V.D.V^T(因为以后需要特征值),然后求解x = A^-1.b = V^T
我遇到了问题。我想创建二维数组 rows=3 cols=2我的代码如下 int **ptr; int row=3; int col=2; ptr=new int *[col]; for (int i=
我有一个 3d mxnxt 矩阵,我希望能够提取 t 2d nxm 矩阵。在我的例子中,我有一个 1024x1024x10 矩阵,我想要 10 张图像显示给我。 这不是 reshape ,我每次只需要
我在 MATLAB 中有一个 3d 矩阵 (n-by-m-by-t) 表示一段时间内网格中的 n-by-m 测量值.我想要一个二维矩阵,其中空间信息消失了,只剩下 n*m 随着时间 t 的测量值(即:
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
使用 eigen2 , 并给定一个矩阵 A a_0_0, a_0_1, a_0_2, ... a_1_0, a_1_0, a_1_2, ... ... 和一个矩阵B: b_0_0, b_0_1, b_
我想知道如何获得下面的布局。 在中型和大型设备上,我希望有 2 行和 2 列的布局(2 x 2 矩阵)。 在小型(和超小型)设备上或调整为小型设备时,我想要一个 4 行和 1 列的矩阵。 我将通过 a
有什么方法可以向量化以下内容: for i = 1:6 te = k(:,:,:,i).*(c(i)); end 我正在尝试将 4D 矩阵 k 乘以向量 c,方法是将其
如何从填充有 1 和 0 的矩阵中抽取 n 个随机点的样本? a=rep(0:1,5) b=rep(0,10) c=rep(1,10) dataset=matrix(cbind(a,b,c),nrow
我正在尝试创建一个包含 X 个 X 的矩阵。以下代码生成从左上角到右下角的 X 对 Angular 线,而不是从右上角到左下角的 X 对 Angular 线。我不确定从哪里开始。是否应该使用新变量创建
我想在 python 中创建一个每行三列的矩阵,并能够通过任何一行对它们进行索引。矩阵中的每个值都是唯一的。 据我所知,我可以设置如下矩阵: matrix = [["username", "name"
我有点迷茫 我创建了一个名为 person 的类,它具有 age 和 name 属性(以及 get set 方法)。然后在另一个类中,我想创建一个 persons 数组,其中每个人都有不同的年龄和姓名
我有 n 个类,它们要么堆叠,要么不堆叠。所有这些类都扩展了同一个类 (CellObject)。我知道更多类将添加到此列表中,我想创建一种易于在一个地方操纵“可堆叠性”的方法。 我正在考虑创建一个矩阵
我有一个包含 x 个字符串名称及其关联 ID 的文件。本质上是两列数据。 我想要的是一个格式为 x x x 的相关样式表(将相关数据同时作为 x 轴和 y 轴),但我想要 fuzzywuzzy 库的函
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
当我在 julia 中输入这个错误跳转但我不知道为什么,它应该工作。/ julia> A = [1 2 3 4; 5 6 7 8; 1 2 3 4; 5 6 7 8] 4×4 Array{Int64,
我是一名优秀的程序员,十分优秀!