我正在尝试直接在 Tensorboard 中显示由 Tensorflow 生成的图像。我尝试使用此解决方案 Tensorflow: How to Display Custom Images in Tensorboard (e.g. Matplotlib Plots)但我不明白如何将其链接到训练期间生成的图像,因为摘要是在创建 Tensorflow 图之前定义的:
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
# ....
if it % 1000 == 0:
samples = sess.run(G_sample, feed_dict={z: sample_z(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'
.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)
与 tf-matplotlib一个简单的散点图可以归结为:
import tensorflow as tf
import numpy as np
import tfmpl
@tfmpl.figure_tensor
def draw_scatter(scaled, colors):
'''Draw scatter plots. One for each color.'''
figs = tfmpl.create_figures(len(colors), figsize=(4,4))
for idx, f in enumerate(figs):
ax = f.add_subplot(111)
ax.axis('off')
ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
f.tight_layout()
return figs
with tf.Session(graph=tf.Graph()) as sess:
# A point cloud that can be scaled by the user
points = tf.constant(
np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
)
scale = tf.placeholder(tf.float32)
scaled = points*scale
# Note, `scaled` above is a tensor. Its being passed `draw_scatter` below.
# However, when `draw_scatter` is invoked, the tensor will be evaluated and a
# numpy array representing its content is provided.
image_tensor = draw_scatter(scaled, ['r', 'g'])
image_summary = tf.summary.image('scatter', image_tensor)
all_summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter('log', sess.graph)
summary = sess.run(all_summaries, feed_dict={scale: 2.})
writer.add_summary(summary, global_step=0)
执行时,Tensorboard 内会产生以下结果
我是一名优秀的程序员,十分优秀!