gpt4 book ai didi

python - Keras 使用 set seed 得到不同的结果

转载 作者:太空宇宙 更新时间:2023-11-03 15:36:37 25 4
gpt4 key购买 nike

<分区>

在keras中,每次运行都具有高方差和不稳定的性能。根据 https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development 解决这个问题.我如图所示设置种子。

不幸的是,这没有帮助,我继续得到混合的结果。任何指导都会有所帮助。

# Seed value (can actually be different for each attribution step)
seed_value= 0

# 1. Set `PYTHONHASHSEED` environment variable at a fixed value
import os
os.environ['PYTHONHASHSEED']=str(seed_value)

# 2. Set `python` built-in pseudo-random generator at a fixed value
import random
random.seed(seed_value)

# 3. Set `numpy` pseudo-random generator at a fixed value
import numpy as np
np.random.seed(seed_value)

# 4. Set `tensorflow` pseudo-random generator at a fixed value
import tensorflow as tf
tf.set_random_seed(seed_value)

# 5. Configure a new global `tensorflow` session
from keras import backend as K
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
from itertools import permutations
import keras
from keras import optimizers
from keras.callbacks import Callback
from keras.initializers import glorot_uniform
from keras.layers import Input, LSTM, Dense, concatenate, Lambda, Multiply, Add, Dropout, multiply, TimeDistributed, Conv1D, GlobalMaxPooling1D, LeakyReLU
from keras.activations import softmax, sigmoid
from keras.models import Model
from keras_sequential_ascii import keras2ascii
from keras import backend as K

从 keras.callbacks 导入 ModelCheckpoint,EarlyStopping

# Custom loss to take full batch (of size beam) and apply a mask to calculate the true loss within the beam
beam_size = 10

K.clear_session()
def create_mask(y, yhat):
idxs = list(permutations(range(beam_size), r=2))
perms_y = tf.gather(y, idxs)
perms_yhat = tf.gather(yhat, idxs)
mask = tf.where(tf.not_equal(perms_y[:,0], perms_y[:,1]))
mask = tf.reduce_sum(mask, 1)
uneq = tf.squeeze(tf.gather(perms_y, mask))
yhat_uneq = tf.squeeze(tf.gather(perms_yhat, mask))
return uneq, yhat_uneq

def mask_acc(y, yhat):
uneq, yhat_uneq = create_mask(y, yhat)
uneq = tf.argmax(uneq,1)
yhat_uneq = tf.argmax(yhat_uneq, 1)
#uneq = tf.Print(uneq, [uneq], summarize=-1)
#yhat_uneq = tf.Print(yhat_uneq, [yhat_uneq], 'pred', summarize=-1)
# argmax and compare
#a = tf.Print(tf.reduce_mean(tf.cast(tf.equal(uneq, yhat_uneq), tf.float32)), [tf.reduce_mean(tf.cast(tf.equal(uneq, yhat_uneq), tf.float32))])
return tf.reduce_mean(tf.cast(tf.equal(uneq, yhat_uneq), tf.float32))#tf.cond(tf.greater(tf.size(yhat_uneq), 1), lambda: tf.reduce_sum(tf.cast(tf.equal(uneq, yhat_uneq), tf.float32)), lambda: 100.)

def beam_acc(y, yhat):
#a = tf.Print(yhat, [yhat], 'pred', summarize=-1)
#yhat = tf.Print(yhat, [yhat],'\nSTART', summarize=-1)
yhat_uneq = tf.argmax(yhat, 0)
# argmax and compare
# do possible indexes and predicted index
y = tf.reshape(y, [-1])
#y = tf.Print(y, [y], summarize=-1)
possible = tf.where(tf.equal(y, tf.constant(1.0,dtype=tf.float32)))
yhat_uneq = tf.Print(yhat_uneq, [yhat_uneq], 'prediction')
possible = tf.reshape(possible, [-1])
#possible = tf.Print(possible, [possible], 'actual')
mean = tf.reduce_mean(tf.cast(tf.reduce_any(tf.equal(possible, yhat_uneq)), tf.float32))
#mean = tf.Print(mean, [mean], 'mean\n')
return mean#tf.reduce_mean(tf.cast(tf.reduce_any(tf.equal(possible, yhat_uneq)), tf.float32))#tf.cond(tf.equal(tf.reduce_sum(y), tf.constant(0.0)), true_fn=lambda: 0., false_fn=lambda: tf.reduce_mean(tf.cast(tf.equal(yhat_uneq, possible), tf.float32)))

def mask_loss(y, yhat):
# Cosider weighted loss
uneq, yhat_uneq = create_mask(y, yhat)
#yhat_uneq = tf.Print(yhat_uneq, [yhat_uneq], summarize=-1)
#create all permutations and zero out matches with mask
total_loss = tf.reduce_mean(tf.losses.softmax_cross_entropy(onehot_labels=tf.cast(uneq, tf.int32), logits=yhat_uneq))
#d = tf.Print(yhat_uneq, [yhat_uneq], summarize=-1)
#total_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=uneq, logits=yhat_uneq))
#total_loss = tf.Print(total_loss, [total_loss])
return total_loss


x = Input((19,78))
lstm1 = LSTM(64, batch_input_shape=(10, 19, 78),return_sequences=True, unroll=True, activation='relu')(x)
#mult = multiply([encoded, ff])
#cat = concatenate([encoded, squeezed])
#dense2 = Dense(10)(encoded)
dense = Dense(1)(lstm1)
#mult = multiply([dense, prob])
#dense2 = Dense(1)(mult)
#print(dense2.shape)
output = Lambda(lambda x: K.sum(x, axis=1))(dense)
#output = Lambda(lambda x: K.squeeze(x, -1))(added)
#lam2 = Lambda(lambda x: K.sum(x, axis=1))(lam)
#probs_aug = Lambda(lambda x: x * .01)(probs)
#output = Add()([lam, probs])
sgd = optimizers.SGD(lr=0.01, nesterov=True, momentum=.9, decay=1e-5)
adam = optimizers.Adam(lr=0.001,decay=1e-5)#, nesterov=True, momentum=.9, decay=1e-5)
lstm_model = Model(inputs=[x], outputs=output)
lstm_model.compile(sgd, loss=mask_loss, metrics=[mask_acc, beam_acc])
filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_beam_acc', verbose=1, save_best_only=True, mode='max')
stop = EarlyStopping(monitor='val_beam_acc', patience=3)
#lstm_model.fit([X_train], y_train, batch_size=10,epochs=10, verbose=1, shuffle=False,validation_data=([X_dev], y_dev))#, callbacks=[checkpoint, ])
#, callbacks=[PlotLossesCallback()])

lstm_model.fit(X_train, y_train, batch_size=10,
epochs=10, verbose=1, shuffle=False,validation_data=(X_dev, y_dev), callbacks=[checkpoint, stop])
#, callbacks=[PlotLossesCallback()])

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com