gpt4 book ai didi

python - numpy 矩形的重叠率

转载 作者:太空宇宙 更新时间:2023-11-03 15:34:46 25 4
gpt4 key购买 nike

我有一个包含这样的坐标数组的数组:

a = [[0,0,300,400],[1,1,15,59],[5,5,300,400]]

现在我想获得每个矩形与其他矩形的重叠率:

def bool_rect_intersect(A, B):
return not (B[0]>A[2] or B[2]<A[0] or B[3]<A[1] or B[1]>A[3])


def get_overlap_ratio(A, B):
in_ = bool_rect_intersect(A, B)
if not in_:
return 0
else:
left = max(A[0], B[0]);
top = max(A[1], B[1]);
right = min(A[2], B[2]);
bottom = min(A[3], B[3]);
intersection = [left, top, right, bottom];
surface_intersection = (intersection[2]-intersection[0])*(intersection[3]-intersection[1]);
surface_A = (A[2]- A[0])*(A[3]-A[1]) + 0.0;
return surface_intersection / surface_A

现在我正在寻找计算大小为 2000+ 的数组的重叠网格的最快方法。如果我循环播放它,需要一分钟多的时间。我尝试了 np.vectorize,但我认为这不适用于多维数组

最佳答案

方法#1:这是一种矢量化方法 -

def pairwise_overlaps(a):
r,c = np.triu_indices(a.shape[0],1)

lt = np.maximum(a[r,:2], a[c,:2])
tb = np.minimum(a[r,2:], a[c,2:])

si_vectorized = (tb[:,0] - lt[:,0]) * (tb[:,1] - lt[:,1])
slicedA_comps = ((a[:,2]- a[:,0])*(a[:,3]-a[:,1]) + 0.0)
sA_vectorized = np.take(slicedA_comps, r)
return si_vectorized/sA_vectorized

示例运行 -

In [48]: a
Out[48]:
array([[ 0, 0, 300, 400],
[ 1, 1, 15, 59],
[ 5, 5, 300, 400]])

In [49]: print get_overlap_ratio(a[0], a[1]) # Looping thru pairs
...: print get_overlap_ratio(a[0], a[2])
...: print get_overlap_ratio(a[1], a[2])
...:
0.00676666666667
0.971041666667
0.665024630542

In [50]: pairwise_overlaps(a) # Proposed app to get all those in one-go
Out[50]: array([ 0.00676667, 0.97104167, 0.66502463])
<小时/>

方法#2:经过仔细检查,我们会发现在之前的方法中,使用 rc 进行索引这将是性能 killer ,因为他们会复制。我们可以对此进行改进,通过针对同一列中的每个其他元素对列中的每个元素执行计算,如下面的实现中所列 -

def pairwise_overlaps_v2(a):
rl = np.minimum(a[:,2], a[:,None,2]) - np.maximum(a[:,0], a[:,None,0])
bt = np.minimum(a[:,3], a[:,None,3]) - np.maximum(a[:,1], a[:,None,1])
si_vectorized2D = rl*bt
slicedA_comps = ((a[:,2]- a[:,0])*(a[:,3]-a[:,1]) + 0.0)
overlaps2D = si_vectorized2D/slicedA_comps[:,None]

r = np.arange(a.shape[0])
tril_mask = r[:,None] < r
return overlaps2D[tril_mask]

运行时测试

In [238]: n = 1000

In [239]: a = np.hstack((np.random.randint(0,100,(n,2)), \
np.random.randint(300,500,(n,2))))

In [240]: np.allclose(pairwise_overlaps(a), pairwise_overlaps_v2(a))
Out[240]: True

In [241]: %timeit pairwise_overlaps(a)
10 loops, best of 3: 35.2 ms per loop

In [242]: %timeit pairwise_overlaps_v2(a)
100 loops, best of 3: 16 ms per loop

让我们添加原始方法作为循环理解 -

In [244]: r,c = np.triu_indices(a.shape[0],1)

In [245]: %timeit [get_overlap_ratio(a[r[i]], a[c[i]]) for i in range(len(r))]
1 loops, best of 3: 2.85 s per loop

与原始方法相比,第二种方法的速度大约提高了 180 倍!

关于python - numpy 矩形的重叠率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42611440/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com