- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个如下所示的数据框:
dates 0
numbers letters
0 a 2013-01-01 0.261092
2013-01-02 -1.267770
2013-01-03 0.008230
b 2013-01-01 -1.515866
2013-01-02 0.351942
2013-01-03 -0.245463
c 2013-01-01 -0.253103
2013-01-02 -0.385411
2013-01-03 -1.740821
1 a 2013-01-01 -0.108325
2013-01-02 -0.212350
2013-01-03 0.021097
b 2013-01-01 -1.922214
2013-01-02 -1.769003
2013-01-03 -0.594216
c 2013-01-01 -0.419775
2013-01-02 1.511700
2013-01-03 0.994332
2 a 2013-01-01 -0.020299
2013-01-02 -0.749474
2013-01-03 -1.478558
b 2013-01-01 -1.357671
2013-01-02 0.161185
2013-01-03 -0.658246
c 2013-01-01 -0.564796
2013-01-02 -0.333106
2013-01-03 -2.814611
现在我得到了一个查询列表,例如:
numbers letters
0 0 b
1 1 c
2 0 b
我需要选择索引满足列表的数据。答案是这样的:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
2013-01-02 0.351942
2013-01-03 -0.245463
1 c 2013-01-01 -0.419775
2013-01-02 1.511700
2013-01-03 0.994332
0 b 2013-01-01 -1.515866
2013-01-02 0.351942
2013-01-03 -0.245463
如何从MultiIndex的Dataframe中选择特定数据来回答具有重复行的查询列表?需要注意的是,查询列表比数据帧的长度长得多。因此,我需要一个足够快的方法来解决这个问题。
(PS,还有另一个问题类似这个问题,但没有重复查询。 How to select a subset from a Multi-Index Dataframe based on conditions from another DataFrame )
最佳答案
如果将第二个 DataFrame
转换为 MultiIndex
,则只需使用 .loc
选择第一个 DataFrame
>
In [2]: idx = df2.set_index(['numbers', 'letters']).index
In [3]: print df.loc[idx]
dates 0
numbers letters
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
1 c 2013-01-01 -0.419775
c 2013-01-02 1.511700
c 2013-01-03 0.994332
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
关于python - 如何根据另一个 DataFrame 的条件从多索引 Dataframe 中选择重复子集,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42776227/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!