gpt4 book ai didi

python - Igraph/networkx 中的 k 最短路径实现(Yen 算法)

转载 作者:太空宇宙 更新时间:2023-11-03 15:20:27 26 4
gpt4 key购买 nike

经过深入研究并基于this , this还有很多建议我实现 k 最短路径算法,以便在大型无向循环加权图中找到第一、第二、第三……第 k 条最短路径。大约2000个节点。

Wikipedia 上的伪代码这是:

function YenKSP(Graph, source, sink, K):
//Determine the shortest path from the source to the sink.
A[0] = Dijkstra(Graph, source, sink);
// Initialize the heap to store the potential kth shortest path.
B = [];

for k from 1 to K:
// The spur node ranges from the first node to the next to last node in the shortest path.
for i from 0 to size(A[i]) − 1:

// Spur node is retrieved from the previous k-shortest path, k − 1.
spurNode = A[k-1].node(i);
// The sequence of nodes from the source to the spur node of the previous k-shortest path.
rootPath = A[k-1].nodes(0, i);

for each path p in A:
if rootPath == p.nodes(0, i):
// Remove the links that are part of the previous shortest paths which share the same root path.
remove p.edge(i, i) from Graph;

// Calculate the spur path from the spur node to the sink.
spurPath = Dijkstra(Graph, spurNode, sink);

// Entire path is made up of the root path and spur path.
totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the heap.
B.append(totalPath);

// Add back the edges that were removed from the graph.
restore edges to Graph;

// Sort the potential k-shortest paths by cost.
B.sort();
// Add the lowest cost path becomes the k-shortest path.
A[k] = B[0];
return A;

主要问题是我还不能为此编写正确的 python 脚本(删除边并将它们正确地放回原位)所以我像往常一样依赖 Igraph 只能走到这一步:

def yenksp(graph,source,sink, k):
global distance
"""Determine the shortest path from the source to the sink."""
a = graph.get_shortest_paths(source, sink, weights=distance, mode=ALL, output="vpath")[0]
b = [] #Initialize the heap to store the potential kth shortest path
#for xk in range(1,k):
for xk in range(1,k+1):
#for i in range(0,len(a)-1):
for i in range(0,len(a)):
if i != len(a[:-1])-1:
spurnode = a[i]
rootpath = a[0:i]
#I should remove edges part of the previous shortest paths, but...:
for p in a:
if rootpath == p:
graph.delete_edges(i)

spurpath = graph.get_shortest_paths(spurnode, sink, weights=distance, mode=ALL, output="vpath")[0]
totalpath = rootpath + spurpath
b.append(totalpath)
# should restore the edges
# graph.add_edges([(0,i)]) <- this is definitely not correct.
graph.add_edges(i)
b.sort()
a[k] = b[0]
return a

这是一个非常糟糕的尝试,它只返回一个列表中的一个列表

我不太确定我在做什么,我已经对这个问题感到非常绝望,在过去的几天里,我对此的看法发生了 180 度的转变,甚至一次。我只是一个尽力而为的菜鸟。请帮忙。也可以建议 Networkx 实现。

附言很可能没有其他可行的方法来解决这个问题,因为我们已经在这里进行了研究。我已经收到了很多建议,我欠社区很多。 DFS 或 BFS 不会工作。图很大。

编辑:我一直在更正 python 脚本。简而言之,这个问题的目的是正确的脚本。

最佳答案

Github 上有 Yen 的 KSP 的 python 实现,YenKSP .充分感谢作者,此处给出了算法的核心:

def ksp_yen(graph, node_start, node_end, max_k=2):
distances, previous = dijkstra(graph, node_start)

A = [{'cost': distances[node_end],
'path': path(previous, node_start, node_end)}]
B = []

if not A[0]['path']: return A

for k in range(1, max_k):
for i in range(0, len(A[-1]['path']) - 1):
node_spur = A[-1]['path'][i]
path_root = A[-1]['path'][:i+1]

edges_removed = []
for path_k in A:
curr_path = path_k['path']
if len(curr_path) > i and path_root == curr_path[:i+1]:
cost = graph.remove_edge(curr_path[i], curr_path[i+1])
if cost == -1:
continue
edges_removed.append([curr_path[i], curr_path[i+1], cost])

path_spur = dijkstra(graph, node_spur, node_end)

if path_spur['path']:
path_total = path_root[:-1] + path_spur['path']
dist_total = distances[node_spur] + path_spur['cost']
potential_k = {'cost': dist_total, 'path': path_total}

if not (potential_k in B):
B.append(potential_k)

for edge in edges_removed:
graph.add_edge(edge[0], edge[1], edge[2])

if len(B):
B = sorted(B, key=itemgetter('cost'))
A.append(B[0])
B.pop(0)
else:
break

return A

关于python - Igraph/networkx 中的 k 最短路径实现(Yen 算法),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15878204/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com