- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
经过深入研究并基于this , this还有很多建议我实现 k 最短路径算法,以便在大型无向循环加权图中找到第一、第二、第三……第 k 条最短路径。大约2000个节点。
Wikipedia 上的伪代码这是:
function YenKSP(Graph, source, sink, K):
//Determine the shortest path from the source to the sink.
A[0] = Dijkstra(Graph, source, sink);
// Initialize the heap to store the potential kth shortest path.
B = [];
for k from 1 to K:
// The spur node ranges from the first node to the next to last node in the shortest path.
for i from 0 to size(A[i]) − 1:
// Spur node is retrieved from the previous k-shortest path, k − 1.
spurNode = A[k-1].node(i);
// The sequence of nodes from the source to the spur node of the previous k-shortest path.
rootPath = A[k-1].nodes(0, i);
for each path p in A:
if rootPath == p.nodes(0, i):
// Remove the links that are part of the previous shortest paths which share the same root path.
remove p.edge(i, i) from Graph;
// Calculate the spur path from the spur node to the sink.
spurPath = Dijkstra(Graph, spurNode, sink);
// Entire path is made up of the root path and spur path.
totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the heap.
B.append(totalPath);
// Add back the edges that were removed from the graph.
restore edges to Graph;
// Sort the potential k-shortest paths by cost.
B.sort();
// Add the lowest cost path becomes the k-shortest path.
A[k] = B[0];
return A;
主要问题是我还不能为此编写正确的 python 脚本(删除边并将它们正确地放回原位)所以我像往常一样依赖 Igraph 只能走到这一步:
def yenksp(graph,source,sink, k):
global distance
"""Determine the shortest path from the source to the sink."""
a = graph.get_shortest_paths(source, sink, weights=distance, mode=ALL, output="vpath")[0]
b = [] #Initialize the heap to store the potential kth shortest path
#for xk in range(1,k):
for xk in range(1,k+1):
#for i in range(0,len(a)-1):
for i in range(0,len(a)):
if i != len(a[:-1])-1:
spurnode = a[i]
rootpath = a[0:i]
#I should remove edges part of the previous shortest paths, but...:
for p in a:
if rootpath == p:
graph.delete_edges(i)
spurpath = graph.get_shortest_paths(spurnode, sink, weights=distance, mode=ALL, output="vpath")[0]
totalpath = rootpath + spurpath
b.append(totalpath)
# should restore the edges
# graph.add_edges([(0,i)]) <- this is definitely not correct.
graph.add_edges(i)
b.sort()
a[k] = b[0]
return a
这是一个非常糟糕的尝试,它只返回一个列表中的一个列表
我不太确定我在做什么,我已经对这个问题感到非常绝望,在过去的几天里,我对此的看法发生了 180 度的转变,甚至一次。我只是一个尽力而为的菜鸟。请帮忙。也可以建议 Networkx 实现。
附言很可能没有其他可行的方法来解决这个问题,因为我们已经在这里进行了研究。我已经收到了很多建议,我欠社区很多。 DFS 或 BFS 不会工作。图很大。
编辑:我一直在更正 python 脚本。简而言之,这个问题的目的是正确的脚本。
最佳答案
Github 上有 Yen 的 KSP 的 python 实现,YenKSP .充分感谢作者,此处给出了算法的核心:
def ksp_yen(graph, node_start, node_end, max_k=2):
distances, previous = dijkstra(graph, node_start)
A = [{'cost': distances[node_end],
'path': path(previous, node_start, node_end)}]
B = []
if not A[0]['path']: return A
for k in range(1, max_k):
for i in range(0, len(A[-1]['path']) - 1):
node_spur = A[-1]['path'][i]
path_root = A[-1]['path'][:i+1]
edges_removed = []
for path_k in A:
curr_path = path_k['path']
if len(curr_path) > i and path_root == curr_path[:i+1]:
cost = graph.remove_edge(curr_path[i], curr_path[i+1])
if cost == -1:
continue
edges_removed.append([curr_path[i], curr_path[i+1], cost])
path_spur = dijkstra(graph, node_spur, node_end)
if path_spur['path']:
path_total = path_root[:-1] + path_spur['path']
dist_total = distances[node_spur] + path_spur['cost']
potential_k = {'cost': dist_total, 'path': path_total}
if not (potential_k in B):
B.append(potential_k)
for edge in edges_removed:
graph.add_edge(edge[0], edge[1], edge[2])
if len(B):
B = sorted(B, key=itemgetter('cost'))
A.append(B[0])
B.pop(0)
else:
break
return A
关于python - Igraph/networkx 中的 k 最短路径实现(Yen 算法),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15878204/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!