- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
拥有一个包含数十万个对象的 GAE 数据存储类型。想做几个涉及查询(涉及计数查询)。 Big Query 似乎非常适合做这件事。
目前是否有使用 Big Query 查询实时 AppEngine 数据存储的简单方法?
最佳答案
您不能直接在 DataStore 实体上运行 BigQuery,但您可以编写一个 Mapper 管道从 DataStore 中读取实体,将它们写入 Google Cloud Storage 中的 CSV,然后将这些提取到 BigQuery - 您甚至可以自动化过程。这是使用 Mapper API 的示例仅 DataStore 到 CSV 步骤的类:
import re
import time
from datetime import datetime
import urllib
import httplib2
import pickle
from google.appengine.ext import blobstore
from google.appengine.ext import db
from google.appengine.ext import webapp
from google.appengine.ext.webapp.util import run_wsgi_app
from google.appengine.ext.webapp import blobstore_handlers
from google.appengine.ext.webapp import util
from google.appengine.ext.webapp import template
from mapreduce.lib import files
from google.appengine.api import taskqueue
from google.appengine.api import users
from mapreduce import base_handler
from mapreduce import mapreduce_pipeline
from mapreduce import operation as op
from apiclient.discovery import build
from google.appengine.api import memcache
from oauth2client.appengine import AppAssertionCredentials
#Number of shards to use in the Mapper pipeline
SHARDS = 20
# Name of the project's Google Cloud Storage Bucket
GS_BUCKET = 'your bucket'
# DataStore Model
class YourEntity(db.Expando):
field1 = db.StringProperty() # etc, etc
ENTITY_KIND = 'main.YourEntity'
class MapReduceStart(webapp.RequestHandler):
"""Handler that provides link for user to start MapReduce pipeline.
"""
def get(self):
pipeline = IteratorPipeline(ENTITY_KIND)
pipeline.start()
path = pipeline.base_path + "/status?root=" + pipeline.pipeline_id
logging.info('Redirecting to: %s' % path)
self.redirect(path)
class IteratorPipeline(base_handler.PipelineBase):
""" A pipeline that iterates through datastore
"""
def run(self, entity_type):
output = yield mapreduce_pipeline.MapperPipeline(
"DataStore_to_Google_Storage_Pipeline",
"main.datastore_map",
"mapreduce.input_readers.DatastoreInputReader",
output_writer_spec="mapreduce.output_writers.FileOutputWriter",
params={
"input_reader":{
"entity_kind": entity_type,
},
"output_writer":{
"filesystem": "gs",
"gs_bucket_name": GS_BUCKET,
"output_sharding":"none",
}
},
shards=SHARDS)
def datastore_map(entity_type):
props = GetPropsFor(entity_type)
data = db.to_dict(entity_type)
result = ','.join(['"%s"' % str(data.get(k)) for k in props])
yield('%s\n' % result)
def GetPropsFor(entity_or_kind):
if (isinstance(entity_or_kind, basestring)):
kind = entity_or_kind
else:
kind = entity_or_kind.kind()
cls = globals().get(kind)
return cls.properties()
application = webapp.WSGIApplication(
[('/start', MapReduceStart)],
debug=True)
def main():
run_wsgi_app(application)
if __name__ == "__main__":
main()
如果您将其附加到 IteratorPipeline 类的末尾:yield CloudStorageToBigQuery(output)
,您可以将生成的 csv 文件句柄通过管道传输到 BigQuery 摄取管道中...像这样:
class CloudStorageToBigQuery(base_handler.PipelineBase):
"""A Pipeline that kicks off a BigQuery ingestion job.
"""
def run(self, output):
# BigQuery API Settings
SCOPE = 'https://www.googleapis.com/auth/bigquery'
PROJECT_ID = 'Some_ProjectXXXX'
DATASET_ID = 'Some_DATASET'
# Create a new API service for interacting with BigQuery
credentials = AppAssertionCredentials(scope=SCOPE)
http = credentials.authorize(httplib2.Http())
bigquery_service = build("bigquery", "v2", http=http)
jobs = bigquery_service.jobs()
table_name = 'datastore_dump_%s' % datetime.utcnow().strftime(
'%m%d%Y_%H%M%S')
files = [str(f.replace('/gs/', 'gs://')) for f in output]
result = jobs.insert(projectId=PROJECT_ID,
body=build_job_data(table_name,files)).execute()
logging.info(result)
def build_job_data(table_name, files):
return {"projectId": PROJECT_ID,
"configuration":{
"load": {
"sourceUris": files,
"schema":{
# put your schema here
"fields": fields
},
"destinationTable":{
"projectId": PROJECT_ID,
"datasetId": DATASET_ID,
"tableId": table_name,
},
}
}
}
关于google-app-engine - 谷歌应用引擎 : Using Big Query on datastore?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10966841/
我在优化 JOIN 以使用复合索引时遇到问题。我的查询是: SELECT p1.id, p1.category_id, p1.tag_id, i.rating FROM products p1
我有一个简单的 SQL 查询,我正在尝试对其进行优化以删除“使用位置;使用临时;使用文件排序”。 这是表格: CREATE TABLE `special_offers` ( `so_id` int
我有一个具有以下结构的应用程序表 app_id VARCHAR(32) NOT NULL, dormant VARCHAR(6) NOT NULL, user_id INT(10) NOT NULL
此查询的正确索引是什么。 我尝试为此查询提供不同的索引组合,但它仍在使用临时文件、文件排序等。 总表数据 - 7,60,346 产品= '连衣裙' - 总行数 = 122 554 CREATE TAB
为什么额外的是“使用where;使用索引”而不是“使用索引”。 CREATE TABLE `pre_count` ( `count_id`
我有一个包含大量记录的数据库,当我使用以下 SQL 加载页面时,速度非常慢。 SELECT goal.title, max(updates.date_updated) as update_sort F
我想知道 Using index condition 和 Using where 之间的区别;使用索引。我认为这两种方法都使用索引来获取第一个结果记录集,并使用 WHERE 条件进行过滤。 Q1。有什
I am using TypeScript 5.2 version, I have following setup:我使用的是TypeScript 5.2版本,我有以下设置: { "
I am using TypeScript 5.2 version, I have following setup:我使用的是TypeScript 5.2版本,我有以下设置: { "
I am using TypeScript 5.2 version, I have following setup:我使用的是TypeScript 5.2版本,我有以下设置: { "
mysql Ver 14.14 Distrib 5.1.58,用于使用 readline 5.1 的 redhat-linux-gnu (x86_64) 我正在接手一个旧项目。我被要求加快速度。我通过
在过去 10 多年左右的时间里,我一直打开数据库 (mysql) 的连接并保持打开状态,直到应用程序关闭。所有查询都在连接上执行。 现在,当我在 Servicestack 网页上看到示例时,我总是看到
我使用 MySQL 为我的站点构建了一个自定义论坛。列表页面本质上是一个包含以下列的表格:主题、上次更新和# Replies。 数据库表有以下列: id name body date topic_id
在mysql中解释的额外字段中你可以得到: 使用索引 使用where;使用索引 两者有什么区别? 为了更好地解释我的问题,我将使用下表: CREATE TABLE `test` ( `id` bi
我经常看到人们在其Haxe代码中使用关键字using。它似乎在import语句之后。 例如,我发现这是一个代码片段: import haxe.macro.Context; import haxe.ma
这个问题在这里已经有了答案: "reduce" or "apply" using logical functions in Clojure (2 个答案) 关闭 8 年前。 “and”似乎是一个宏,
这个问题在这里已经有了答案: "reduce" or "apply" using logical functions in Clojure (2 个答案) 关闭 8 年前。 “and”似乎是一个宏,
我正在考虑在我的应用程序中使用注册表模式来存储指向某些应用程序窗口和 Pane 的弱指针。应用程序的一般结构如下所示。 该应用程序有一个 MainFrame 顶层窗口,其中有几个子 Pane 。可以有
奇怪的是:。似乎a是b或多或少被定义为id(A)==id(B)。用这种方式制造错误很容易:。有些名字出人意料地出现在Else块中。解决方法很简单,我们应该使用ext==‘.mp3’,但是如果ext表面
我遇到了一个我似乎无法解决的 MySQL 问题。为了能够快速执行用于报告目的的 GROUP BY 查询,我已经将几个表非规范化为以下内容(该表由其他表上的触发器维护,我已经同意了与此): DROP T
我是一名优秀的程序员,十分优秀!