- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想基于我自己的图像数据集构建一个 conVNN。为此,我首先需要阅读这些文件,这就是我所做的:
import tensorflow as tf
# Here generating a tensor of type string that include all the filename with png extention
filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once("test_png/*.png"))
# Initializing a file Reader
image_reader = tf.WholeFileReader()
# Here the file all the files mentioned ie filename queue and
# returns the the file name and the pixelvalue in form of a tensor !
imageName,imagefile= image_reader.read(filename_queue)
image = tf.image.decode_png(imagefile)
tf.global_variables_initializer()
with tf.Session() as sess:
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# Get an image tensor and print its value.
image_tensor = sess.run([image])
print(image_tensor)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
为了让事情变得简单:test
文件夹包含10个png文件
,名为1.png 2.png .... 10.png
当我运行代码时,我得到以下信息:
INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.FailedPreconditionError'>, Attempting to use uninitialized value matching_filenames
[[Node: matching_filenames/read = Identity[T=DT_STRING, _class=["loc:@matching_filenames"], _device="/job:localhost/replica:0/task:0/cpu:0"](matching_filenames)]]
Caused by op 'matching_filenames/read', defined at:
File "c:\users\engine\appdata\local\programs\python\python35\lib\runpy.py", line 184, in _run_module_as_main
"__main__", mod_spec)
File "c:\users\engine\appdata\local\programs\python\python35\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
app.launch_new_instance()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
ioloop.IOLoop.instance().start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\ioloop.py", line 887, in start
handler_func(fd_obj, events)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
return self.dispatch_shell(stream, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
handler(stream, idents, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-110a62c88def>", line 3, in <module>
filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once("test_png/*.png"))
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\training\input.py", line 68, in match_filenames_once
collections=[ops.GraphKeys.LOCAL_VARIABLES])
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\ops\variables.py", line 197, in __init__
expected_shape=expected_shape)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\ops\variables.py", line 316, in _init_from_args
self._snapshot = array_ops.identity(self._variable, name="read")
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1338, in identity
result = _op_def_lib.apply_op("Identity", input=input, name=name)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value matching_filenames
[[Node: matching_filenames/read = Identity[T=DT_STRING, _class=["loc:@matching_filenames"], _device="/job:localhost/replica:0/task:0/cpu:0"](matching_filenames)]]
---------------------------------------------------------------------------
OutOfRangeError Traceback (most recent call last)
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1038 try:
-> 1039 return fn(*args)
1040 except errors.OpError as e:
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1020 feed_dict, fetch_list, target_list,
-> 1021 status, run_metadata)
1022
c:\users\engine\appdata\local\programs\python\python35\lib\contextlib.py in __exit__(self, type, value, traceback)
65 try:
---> 66 next(self.gen)
67 except StopIteration:
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:
OutOfRangeError: FIFOQueue '_0_input_producer' is closed and has insufficient elements (requested 1, current size 0)
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
During handling of the above exception, another exception occurred:
OutOfRangeError Traceback (most recent call last)
<ipython-input-1-110a62c88def> in <module>()
16
17 # Get an image tensor and print its value.
---> 18 image_tensor = sess.run([image])
19 print(image_tensor)
20
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
776 try:
777 result = self._run(None, fetches, feed_dict, options_ptr,
--> 778 run_metadata_ptr)
779 if run_metadata:
780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
980 if final_fetches or final_targets:
981 results = self._do_run(handle, final_targets, final_fetches,
--> 982 feed_dict_string, options, run_metadata)
983 else:
984 results = []
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1030 if handle is None:
1031 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032 target_list, options, run_metadata)
1033 else:
1034 return self._do_call(_prun_fn, self._session, handle, feed_dict,
c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1050 except KeyError:
1051 pass
-> 1052 raise type(e)(node_def, op, message)
1053
1054 def _extend_graph(self):
OutOfRangeError: FIFOQueue '_0_input_producer' is closed and has insufficient elements (requested 1, current size 0)
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
Caused by op 'ReaderReadV2', defined at:
File "c:\users\engine\appdata\local\programs\python\python35\lib\runpy.py", line 184, in _run_module_as_main
"__main__", mod_spec)
File "c:\users\engine\appdata\local\programs\python\python35\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
app.launch_new_instance()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
ioloop.IOLoop.instance().start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\ioloop.py", line 887, in start
handler_func(fd_obj, events)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
return self.dispatch_shell(stream, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
handler(stream, idents, msg)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-1-110a62c88def>", line 9, in <module>
imageName,imagefile= image_reader.read(filename_queue)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\ops\io_ops.py", line 193, in read
return gen_io_ops._reader_read_v2(self._reader_ref, queue_ref, name=name)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\ops\gen_io_ops.py", line 411, in _reader_read_v2
queue_handle=queue_handle, name=name)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "c:\users\engine\appdata\local\programs\python\python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
OutOfRangeError (see above for traceback): FIFOQueue '_0_input_producer' is closed and has insufficient elements (requested 1, current size 0)
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
说实话,我不知道如何解决这个问题?预先感谢您的任何提示
更新
在 Ujjwal 回答之后,我得到了 tf.train.string_input_ Producer
的参数,如下所示:
import tensorflow as tf
import os
files = os.listdir('test_png')
# Here generating a tensor of type string that include all the filename with png extention
filename_queue = tf.train.string_input_producer(files)
# Initializing a file Reader
image_reader = tf.WholeFileReader()
# Here the file all the files mentioned ie filename queue and
# returns the the file name and the pixelvalue in form of a tensor !
imageName,imagefile= image_reader.read(filename_queue)
image = tf.image.decode_png(imagefile)
#tf.global_variables_initializer()
with tf.Session() as sess:
tf.global_variables_initializer().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# Get an image tensor and print its value.
image_tensor = sess.run([image])
print(image_tensor)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
现在看来 TF 可以找到文件,但仍然无法读取它们,这是实际的错误消息:
[Command: python -u D:\Masterarbeit\Tensorflow\Main\convNN\own_DATA.py]
2017-06-08 15:12:31.845015: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.845384: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.845662: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.845949: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.846859: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.847174: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.847464: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-08 15:12:31.847754: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Traceback (most recent call last):
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1039, in _do_call
return fn(*args)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _run_fn
status, run_metadata)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\contextlib.py", line 66, in __exit__
next(self.gen)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.NotFoundError: Can not get size for: 4.png : The system cannot find the file specified.
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:\Masterarbeit\Tensorflow\Main\convNN\own_DATA.py", line 22, in <module>
image_tensor = sess.run([image])
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 778, in run
run_metadata_ptr)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 982, in _run
feed_dict_string, options, run_metadata)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1032, in _do_run
target_list, options, run_metadata)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1052, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: Can not get size for: 4.png : The system cannot find the file specified.
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
Caused by op 'ReaderReadV2', defined at:
File "D:\Masterarbeit\Tensorflow\Main\convNN\own_DATA.py", line 12, in <module>
imageName,imagefile= image_reader.read(filename_queue)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\io_ops.py", line 193, in read
return gen_io_ops._reader_read_v2(self._reader_ref, queue_ref, name=name)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_io_ops.py", line 411, in _reader_read_v2
queue_handle=queue_handle, name=name)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Users\Engine\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()
NotFoundError (see above for traceback): Can not get size for: 4.png : The system cannot find the file specified.
[[Node: ReaderReadV2 = ReaderReadV2[_device="/job:localhost/replica:0/task:0/cpu:0"](WholeFileReaderV2, input_producer)]]
[Finished in 1.972s]
更新
基于 Ujjwal 的答案是我现在使用的代码,希望它可以帮助那里的人:
import tensorflow as tf
import os
# list files name
files = os.listdir("Test_PNG")
files = ["Test_PNG/" + s for s in files]
files = [os.path.abspath(s) for s in files ]
# Here generating a tensor of type string that include all the filename with png extention
filename_queue = tf.train.string_input_producer(files)
# Initializing a file Reader
image_reader = tf.WholeFileReader()
# Here the file all the files mentioned ie filename queue and
# returns the the file name and the pixelvalue in form of a tensor !
imageName,imagefile= image_reader.read(filename_queue)
image = tf.image.decode_png(imagefile)
#tf.global_variables_initializer()
with tf.Session() as sess:
tf.global_variables_initializer().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# Get an image tensor and print its value.
image_tensor = sess.run([image])
print(image_tensor)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
最佳答案
您必须初始化变量。尝试将 tf.global_variables_initializer()
移动到 tf.Session() as sess:
block 中,并将其作为 tf.global_variables_initializer().run()
运行>
关于python - 使用 Tensorflow 读取 PNG 文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44435677/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!