- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有两个完全不同的数据框需要映射(感谢生物学)。所有关于 pandas 的教程都是关于简单得多的转换,如果没有 4 个嵌套循环,我无法解决这个问题(真正的新手),但没有成功。真的很好奇用 Python 的方式来解决这个问题,而不必返回 Excel。
第一个是这样的 df1.对 a-j 类别中数千个基因的 0 和 1 的观察。
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])
print(df1)
a b c d e f g h i j
gene1 1 0 1 0 1 0 1 1 1 0
gene2 0 1 0 0 0 0 0 0 1 0
gene3 0 1 1 1 1 1 0 0 0 0
gene4 1 0 1 0 0 1 0 1 1 1
gene5 0 0 1 0 0 0 0 0 0 0
gene6 0 1 0 0 1 0 1 0 1 0
gene7 1 1 0 1 1 0 0 0 1 0
gene8 0 0 0 1 1 1 1 0 1 0
gene9 1 0 1 0 1 0 1 1 0 1
gene10 1 0 0 0 1 0 1 0 1 1
那么第二个就是这样的 df2。较高级别类别 (X-W) 与较低级别类别的映射。这个女孩有 NaN 并且没有索引。
df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','Nan']},index=None)
print(df2)
W X Y Z
0 i a d g
1 j NaN b h
2 NaN NaN c e
3 Nan NaN f NaN
我需要的是像result1这样的东西。这里还有另一个棘手的事情。例如。 gene4 属于 i 和 j 类别,并且都属于 W,但我仍然只想要 result1.loc['gene4','W'] 中的“1”。最终结果仍然需要是二进制的。
result1 = pd.DataFrame({'X': ['1','0','0','1','0','0','1','0','1','1'],
'Y': ['1','1','1','1','1','1','1','1','1','0'],
'Z': ['1','0','1','1','0','1','1','1','1','1'],
'W': ['1','1','0','1','0','1','1','1','1','1']}, index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])
print(result1)
W X Y Z
gene1 1 1 1 1
gene2 1 0 1 0
gene3 0 0 1 1
gene4 1 1 1 1
gene5 0 0 1 0
gene6 1 0 1 1
gene7 1 1 1 1
gene8 1 0 1 1
gene9 1 1 1 1
gene10 1 1 0 1
这可能是另一种可能的结果格式。 [根据实际预期结果更新]。如果有人想教他们两者(或简单的相互转换),我会非常感激,科学也很感激。
result1 = pd.DataFrame({'1': ['gene1','gene1','gene1','gene1'],
'2': ['gene2','gene4','gene2','gene3'],
'3': ['gene4','gene7','gene3','gene4'],
'4': ['gene6','gene9','gene4','gene6'],
'5': ['gene7','gene10','gene5','gene7'],
'6': ['gene8','NaN','gene6','gene8'],
'7': ['gene9','NaN','gene7','gene9'],
'8': ['gene10','NaN','gene8','gene10'],
'9': ['NaN','NaN','gene9','NaN'],
},
index = ['W','X','Y','Z'])
print(result1)
1 2 3 4 5 6 7 8 9
W gene1 gene2 gene4 gene6 gene7 gene8 gene9 gene10 NaN
X gene1 gene4 gene7 gene9 gene10 NaN NaN NaN NaN
Y gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9
Z gene1 gene3 gene4 gene6 gene7 gene8 gene9 gene10 NaN
非常感谢您耐心阅读这个长问题。
最佳答案
我们开始吧!让我们试试这个。
df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])
df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','NaN']},index=None)
df2 = df2.replace('NaN',np.nan)
gmap = df2.stack().reset_index().drop('level_0',axis=1).set_index(0)['level_1']
df3 = df1.stack().replace(0,np.nan).dropna().reset_index(level=1)['level_1'].map(gmap).reset_index().drop_duplicates()
df_out = df3.groupby(['index','level_1'])['level_1'].count().unstack()
print(df_out)
输出:
level_1 W X Y Z
index
gene1 1.0 NaN NaN NaN
gene10 1.0 1.0 1.0 1.0
gene2 1.0 1.0 1.0 1.0
gene3 1.0 1.0 1.0 1.0
gene4 1.0 NaN 1.0 1.0
gene5 1.0 NaN 1.0 NaN
gene6 1.0 1.0 1.0 1.0
gene7 NaN 1.0 1.0 1.0
gene8 NaN NaN 1.0 1.0
gene9 1.0 NaN NaN 1.0
df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])
df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','NaN']},index=None)
df2 = df2.replace('NaN',np.nan)
gmap = df2.stack().reset_index().drop('level_0',axis=1).set_index(0)['level_1']
df3 = df1.stack().replace(0,np.nan).dropna().reset_index(level=1)['level_1'].map(gmap).reset_index().drop_duplicates()
df3['cols'] = df3['index'].str.split('gene').str[1].astype(int)
df_out2 = df3.set_index(['level_1','cols'])['index'].unstack()
输出:
cols 1 2 3 4 5 6 7 8 9 10
level_1
W gene1 gene2 gene3 gene4 gene5 None gene7 gene8 gene9 gene10
X None None gene3 None gene5 None None gene8 gene9 gene10
Y gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
Z None gene2 None gene4 None gene6 None gene8 gene9 None
关于python - Pandas:不同大小的 DataFrame 之间的复杂映射,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44957255/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!