gpt4 book ai didi

python - Pandas:不同大小的 DataFrame 之间的复杂映射

转载 作者:太空宇宙 更新时间:2023-11-03 15:02:19 28 4
gpt4 key购买 nike

我有两个完全不同的数据框需要映射(感谢生物学)。所有关于 pandas 的教程都是关于简单得多的转换,如果没有 4 个嵌套循环,我无法解决这个问题(真正的新手),但没有成功。真的很好奇用 Python 的方式来解决这个问题,而不必返回 Excel。

第一个是这样的 df1.对 a-j 类别中数千个基因的 0 和 1 的观察。

import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])

print(df1)

a b c d e f g h i j
gene1 1 0 1 0 1 0 1 1 1 0
gene2 0 1 0 0 0 0 0 0 1 0
gene3 0 1 1 1 1 1 0 0 0 0
gene4 1 0 1 0 0 1 0 1 1 1
gene5 0 0 1 0 0 0 0 0 0 0
gene6 0 1 0 0 1 0 1 0 1 0
gene7 1 1 0 1 1 0 0 0 1 0
gene8 0 0 0 1 1 1 1 0 1 0
gene9 1 0 1 0 1 0 1 1 0 1
gene10 1 0 0 0 1 0 1 0 1 1

那么第二个就是这样的 df2。较高级别类别 (X-W) 与较低级别类别的映射。这个女孩有 NaN 并且没有索引。

df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','Nan']},index=None)

print(df2)

W X Y Z
0 i a d g
1 j NaN b h
2 NaN NaN c e
3 Nan NaN f NaN

我需要的是像result1这样的东西。这里还有另一个棘手的事情。例如。 gene4 属于 i 和 j 类别,并且都属于 W,但我仍然只想要 result1.loc['gene4','W'] 中的“1”。最终结果仍然需要是二进制的。

result1 = pd.DataFrame({'X': ['1','0','0','1','0','0','1','0','1','1'],
'Y': ['1','1','1','1','1','1','1','1','1','0'],
'Z': ['1','0','1','1','0','1','1','1','1','1'],
'W': ['1','1','0','1','0','1','1','1','1','1']}, index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])
print(result1)


W X Y Z
gene1 1 1 1 1
gene2 1 0 1 0
gene3 0 0 1 1
gene4 1 1 1 1
gene5 0 0 1 0
gene6 1 0 1 1
gene7 1 1 1 1
gene8 1 0 1 1
gene9 1 1 1 1
gene10 1 1 0 1

这可能是另一种可能的结果格式。 [根据实际预期结果更新]。如果有人想教他们两者(或简单的相互转换),我会非常感激,科学也很感激。

result1 = pd.DataFrame({'1': ['gene1','gene1','gene1','gene1'],
'2': ['gene2','gene4','gene2','gene3'],
'3': ['gene4','gene7','gene3','gene4'],
'4': ['gene6','gene9','gene4','gene6'],
'5': ['gene7','gene10','gene5','gene7'],
'6': ['gene8','NaN','gene6','gene8'],
'7': ['gene9','NaN','gene7','gene9'],
'8': ['gene10','NaN','gene8','gene10'],
'9': ['NaN','NaN','gene9','NaN'],
},
index = ['W','X','Y','Z'])
print(result1)

1 2 3 4 5 6 7 8 9
W gene1 gene2 gene4 gene6 gene7 gene8 gene9 gene10 NaN
X gene1 gene4 gene7 gene9 gene10 NaN NaN NaN NaN
Y gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9
Z gene1 gene3 gene4 gene6 gene7 gene8 gene9 gene10 NaN

非常感谢您耐心阅读这个长问题。

最佳答案

我们开始吧!让我们试试这个。

df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])

df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','NaN']},index=None)

df2 = df2.replace('NaN',np.nan)

gmap = df2.stack().reset_index().drop('level_0',axis=1).set_index(0)['level_1']

df3 = df1.stack().replace(0,np.nan).dropna().reset_index(level=1)['level_1'].map(gmap).reset_index().drop_duplicates()

df_out = df3.groupby(['index','level_1'])['level_1'].count().unstack()

print(df_out)

输出:

level_1    W    X    Y    Z
index
gene1 1.0 NaN NaN NaN
gene10 1.0 1.0 1.0 1.0
gene2 1.0 1.0 1.0 1.0
gene3 1.0 1.0 1.0 1.0
gene4 1.0 NaN 1.0 1.0
gene5 1.0 NaN 1.0 NaN
gene6 1.0 1.0 1.0 1.0
gene7 NaN 1.0 1.0 1.0
gene8 NaN NaN 1.0 1.0
gene9 1.0 NaN NaN 1.0

编辑以获取可选输出

df1 = pd.DataFrame(np.random.randint(0,2,size =(10,10)),columns=list('abcdefghij'), index = ['gene1','gene2','gene3','gene4','gene5','gene6','gene7','gene8','gene9','gene10'])

df2 = pd.DataFrame({'X': ['a','NaN','NaN','NaN'],
'Y': ['d', 'b', 'c','f'],
'Z':['g', 'h','e','NaN'],
'W': ['i', 'j','NaN','NaN']},index=None)

df2 = df2.replace('NaN',np.nan)

gmap = df2.stack().reset_index().drop('level_0',axis=1).set_index(0)['level_1']

df3 = df1.stack().replace(0,np.nan).dropna().reset_index(level=1)['level_1'].map(gmap).reset_index().drop_duplicates()

df3['cols'] = df3['index'].str.split('gene').str[1].astype(int)

df_out2 = df3.set_index(['level_1','cols'])['index'].unstack()

输出:

cols        1      2      3      4      5      6      7      8      9       10
level_1
W gene1 gene2 gene3 gene4 gene5 None gene7 gene8 gene9 gene10
X None None gene3 None gene5 None None gene8 gene9 gene10
Y gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
Z None gene2 None gene4 None gene6 None gene8 gene9 None

关于python - Pandas:不同大小的 DataFrame 之间的复杂映射,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44957255/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com