- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在我的数据集上试验特征选择,我注意到 a) 将特征选择放入 GridSearchCV 对象中包裹的 Pipeline 中并调用“fit”,以及 b) 在特征选择器上调用 fit_transform 然后得到不同的结果将 GridSearhCV 应用到分类器上,从特征选择器中获取 fit_transformed 特征矩阵。是因为“fit”和“fit_transform”之间的区别吗?不确定我是否说清楚了,但这里是 gridsearch 的代码:
fs=SelectFromModel(LogisticRegression(class_weight='balanced',penalty="l1",C=0.01))
fs_params = {} #deliberately leaving these empty for comparison
classifier = svm.LinearSVC()
cl_params = {} #deliberately leaving these empty for comparison
pipe = []
params=[]
pipe.append(('fs', fs))
params.append(fs_params)
pipe.append(('classify', classifier))
params.append(cl_params)
pipeline=Pipeline(pipe)
piped_classifier = GridSearchCV(pipeline, param_grid=params, cv=10,
n_jobs=-1)
piped_classifier.fit(X_train, y_train)
nfold_predictions=cross_val_predict(piped_classifier.best_estimator_, X_train, y_train, cv=10)
best_estimator = piped_classifier.best_estimator_
best_param = piped_classifier.best_params_
cv_score = piped_classifier.best_score_
#followed by code to print scores
以及在 GridSearchCV 之外进行特征选择的代码:
select = SelectFromModel(LogisticRegression(class_weight='balanced',penalty="l1",C=0.01))
X_ = select.fit_transform(X_train,y_train) #line A
classifier = svm.LinearSVC()
piped_classifier = GridSearchCV(classifier, param_grid=params, cv=10,
n_jobs=-1)
piped_classifier.fit(X_, y_train)
nfold_predictions=cross_val_predict(piped_classifier.best_estimator_, X_, y_train, cv=10)
best_estimator = piped_classifier.best_estimator_
best_param = piped_classifier.best_params_
cv_score = piped_classifier.best_score_
#followed by code to print scores
对于第一个代码,我得到的分数如下:
P=0.31 R=0.17 F1=0.22
而第二个,分数更好:
P=0.41 R=0.28 F=0.33
我能想到的唯一可能导致这个问题的是第二个代码片段中的A行,它调用了fit_transform。除此之外,我认为这两个代码片段应该执行相同的任务。
非常感谢任何建议。
最佳答案
一般来说,您应该预期可能由于 data leakage 而导致不同的结果
在第二个片段中,gridsearch 在 X_train
的切片上训练 svc,但是,特征选择是在所有 X_train
上训练的
在第一个示例中,您避免了这个问题。
这会严重降低泛化性能。但是,目前还不清楚如何获得 P、R 和 F 的信息。它们来自测试集吗?
但是,我不确定这是否可以解释指标差异的严重程度。至少您的代码显示了使用数据泄漏时典型的过度拟合,并且在管道化特征选择时性能会下降。
您可能还想查看 scikit-learn documentation on nested cross-validation
让我添加一个重要的注释:在第二种方法中,您将修复一开始传递给 svc 的功能。因此,svc 将在每次折叠时使用相同的功能。而在第一个示例中,传递给网格搜索的特征可能会因折叠而异!
关于python - sklearn : how to make fit and transform a feature selector in a GridSearchCV,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45056309/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!