gpt4 book ai didi

python - 在 Raspberry Pi 上优化 Python 合成器

转载 作者:太空宇宙 更新时间:2023-11-03 15:00:02 25 4
gpt4 key购买 nike

在过去的几周里,我一直在从事一个对我来说非常新的项目,并且我正在边做边学。我正在使用 Raspberry Pi 2 构建一个合成器,并使用 Python3 对其进行编码,因为我对该语言有一些基本知识,但没有太多实际经验。到目前为止,我已经应付得很好,但我现在已经碰上了我知道我最终会碰上的墙:性能。

我一直在使用 Pygame 及其声音模块来创建我想要的声音,然后使用我自己的数学算法来计算每个声音的 ADS(H)R 音量包络。我使用 8 个电位器调整这个包络。其中 3 个控制 Attack、Decay、Release 的长度(以秒为单位),另一个用于设置 Sustain 级别。然后我又添加了 4 个电位器来控制包络每个部分的曲率(除了其中一个电位器为延音设置了保持值)。我还连接了一个 PiTFT 屏幕,它可以绘制整个信封的当前形状和长度,并打印出 ADSR 的当前值。

为了播放声音,我使用 4x4 Adafruit Trellis 板,通过不同的按钮组合,我可以播放 C0 和 C8 之间的每个音符。

我使用 SciPy 和 NumPy 创建不同类型的声波,如正弦波、方波、三角波、锯齿波、脉冲波和噪声波。

由于我一直使用常规 for 循环根据 ADSR 包络来更改声音的音量,因此运行 PlaySound 函数需要一段时间才能完成(当然取决于我的 ADSR 设置)。这促使我尝试使用线程。我不知道我是否以最好的方式使用它,或者我是否应该使用它,但这是我能想到的实现复调的唯一方法。否则它必须等到声音完成才能恢复主循环。所以现在我可以同时演奏几个音符。好吧,至少有两个注释。之后,它就会滞后,并且直到前面的声音之一结束后,第三个声音似乎才播放。

我已经做了一些测试和检查,我应该能够同时运行最多 4 个线程,但我可能会遗漏一些东西。一种猜测是系统本身预留了两个线程(核心)用于其他用途。

我还意识到 Python 并不是最有效的语言,我也一直在研究纯数据,但我很难理解它(我更喜欢代码而不是点击-拖动 GUI)。我想尽可能长时间地继续使用Python。我可能会考虑使用 pyo,但我认为我必须从头开始编写我的代码(我愿意这样做,但我还不想放弃当前的代码)。

所以。这是我的问题:如何优化它以使其成为真正的复调?两个笔记还不够。我应该完全跳过线程吗?我能否以更好、成本更低的方式实现 ADSR 包络?我怎样才能清理我凌乱的数学?还有哪些我忽略的其他性能瓶颈?目前,Pygame 绘制到屏幕上的效果似乎可以忽略不计,因为如果我完全禁用它,几乎没有任何区别。这是到目前为止我的代码:

import pygame
from pygame.mixer import Sound, get_init, pre_init, get_num_channels
from array import array
import RPi.GPIO as GPIO
import alsaaudio
import time
import Adafruit_Trellis
import Adafruit_MCP3008
import math
import _thread
import os
import multiprocessing
import numpy as np
from scipy import signal as sg
import struct

#print(str(multiprocessing.cpu_count()))

os.putenv('SDL_FBDEV','/dev/fb1')

fps = pygame.time.Clock()

FRAMERATE = 100
MINSEC = 1/FRAMERATE

BLUE = ( 0, 0, 255)
WHITE = (255, 255, 255)
DARKRED = (128, 0, 0)
DARKBLUE = ( 0, 0, 128)
RED = (255, 0, 0)
GREEN = ( 0, 255, 0)
DARKGREEN = ( 0, 128, 0)
YELLOW = (255, 255, 0)
DARKYELLOW = (128, 128, 0)
BLACK = ( 0, 0, 0)

PTCH = [ 1.00, 1.059633027522936, 1.122324159021407, 1.18960244648318,
1.259938837920489, 1.335168195718654, 1.414067278287462,
1.498470948012232, 1.587767584097859, 1.681957186544343,
1.782262996941896, 1.888073394495413, 2.00 ]

FREQ = { # Parsed from http://www.phy.mtu.edu/~suits/notefreqs.html
'C0': 16.35, 'Cs0': 17.32, 'D0': 18.35, 'Ds0': 19.45, 'E0': 20.60,
'F0': 21.83, 'Fs0': 23.12, 'G0': 24.50, 'Gs0': 25.96, 'A0': 27.50,
'As0': 29.14, 'B0': 30.87, 'C1': 32.70, 'Cs1': 34.65, 'D1': 36.71,
'Ds1': 38.89, 'E1': 41.20, 'F1': 43.65, 'Fs1': 46.25, 'G1': 49.00,
'Gs1': 51.91, 'A1': 55.00, 'As1': 58.27, 'B1': 61.74, 'C2': 65.41,
'Cs2': 69.30, 'D2': 73.42, 'Ds2': 77.78, 'E2': 82.41, 'F2': 87.31,
'Fs2': 92.50, 'G2': 98.00, 'Gs2': 103.83, 'A2': 110.00, 'As2': 116.54,
'B2': 123.47, 'C3': 130.81, 'Cs3': 138.59, 'D3': 146.83, 'Ds3': 155.56,
'E3': 164.81, 'F3': 174.61, 'Fs3': 185.00, 'G3': 196.00, 'Gs3': 207.65,
'A3': 220.00, 'As3': 233.08, 'B3': 246.94, 'C4': 261.63, 'Cs4': 277.18,
'D4': 293.66, 'Ds4': 311.13, 'E4': 329.63, 'F4': 349.23, 'Fs4': 369.99,
'G4': 392.00, 'Gs4': 415.30, 'A4': 440.00, 'As4': 466.16, 'B4': 493.88,
'C5': 523.25, 'Cs5': 554.37, 'D5': 587.33, 'Ds5': 622.25, 'E5': 659.26,
'F5': 698.46, 'Fs5': 739.99, 'G5': 783.99, 'Gs5': 830.61, 'A5': 880.00,
'As5': 932.33, 'B5': 987.77, 'C6': 1046.50, 'Cs6': 1108.73, 'D6': 1174.66,
'Ds6': 1244.51, 'E6': 1318.51, 'F6': 1396.91, 'Fs6': 1479.98, 'G6': 1567.98,
'Gs6': 1661.22, 'A6': 1760.00, 'As6': 1864.66, 'B6': 1975.53, 'C7': 2093.00,
'Cs7': 2217.46, 'D7': 2349.32, 'Ds7': 2489.02, 'E7': 2637.02, 'F7': 2793.83,
'Fs7': 2959.96, 'G7': 3135.96, 'Gs7': 3322.44, 'A7': 3520.00,
'As7': 3729.31, 'B7': 3951.07,
'C8': 4186.01, 'Cs8': 4434.92, 'D8': 4698.64, 'Ds8': 4978.03,
}

buttons = ['A',PTCH[9],PTCH[10],PTCH[11],'B',PTCH[6],PTCH[7],PTCH[8],'C',PTCH[3],PTCH[4],PTCH[5],PTCH[12],PTCH[0],PTCH[1],PTCH[2] ]

octaves = { 'BASE':'0', 'A':'1', 'B':'2', 'C':'3', 'AB':'4', 'AC':'5', 'BC':'6', 'ABC':'7' }

class Note(pygame.mixer.Sound):

def __init__(self, frequency, volume=.1):
self.frequency = frequency
self.oktostop = False
Sound.__init__(self, self.build_samples())
self.set_volume(volume)

def playSound(self, Aval, Dval, Sval, Rval, Acurve, Dcurve, Shold, Rcurve, fps):
self.set_volume(0)
self.play(-1)
if Aval >= MINSEC:
Alength = round(Aval*FRAMERATE)

for num in range(0,Alength+1):
fps.tick_busy_loop(FRAMERATE)
volume = (Acurve[1]*pow(num*MINSEC,Acurve[0]))/100
self.set_volume(volume)
#print(fps.get_time()," ",str(volume))
else:
self.set_volume(100)

if Sval <= 1 and Sval > 0 and Dval >= MINSEC:
Dlength = round(Dval*FRAMERATE)

for num in range(0,Dlength+1):
fps.tick_busy_loop(FRAMERATE)
volume = (Dcurve[1]*pow(num*MINSEC,Dcurve[0])+100)/100
self.set_volume(volume)
#print(fps.get_time()," ",str(volume))
elif Sval <= 1 and Sval > 0 and Dval < MINSEC:
self.set_volume(Sval)
else:
self.set_volume(0)

if Shold >= MINSEC:
Slength = round(Shold*FRAMERATE)
for num in range(0,Slength+1):
fps.tick_busy_loop(FRAMERATE)

while True:
if self.oktostop:
if Sval > 0 and Rval >= MINSEC:
Rlength = round(Rval*FRAMERATE)
for num in range(0,Rlength+1):
fps.tick_busy_loop(FRAMERATE)
volume = (Rcurve[1]*pow(num*MINSEC,Rcurve[0])+(Sval*100))/100
self.set_volume(volume)
#print(fps.get_time()," ",str(volume))
self.stop()
break

def stopSound(self):
self.oktostop = True

def build_samples(self):
Fs = get_init()[0]
f = self.frequency
sample = Fs/f
x = np.arange(sample)

# Sine wave
#y = 0.5*np.sin(2*np.pi*f*x/Fs)

# Square wave
y = 0.5*sg.square(2*np.pi*f*x/Fs)

# Pulse wave
#sig = np.sin(2 * np.pi * x)
#y = 0.5*sg.square(2*np.pi*f*x/Fs, duty=(sig + 1)/2)

# Sawtooth wave
#y = 0.5*sg.sawtooth(2*np.pi*f*x/Fs)

# Triangle wave
#y = 0.5*sg.sawtooth(2*np.pi*f*x/Fs,0.5)

# White noise
#y = 0.5*np.random.uniform(-1.000,1.000,sample)
return y


pre_init(44100, -16, 2, 2048)
pygame.init()
screen = pygame.display.set_mode((480, 320))
pygame.mouse.set_visible(False)

CLK = 5
MISO = 6
MOSI = 13
CS = 12

mcp = Adafruit_MCP3008.MCP3008(clk=CLK, cs=CS, miso=MISO, mosi=MOSI)

Asec = 1.0
Dsec = 1.0
Ssec = 1.0
Rsec = 1.0

matrix0 = Adafruit_Trellis.Adafruit_Trellis()
trellis = Adafruit_Trellis.Adafruit_TrellisSet(matrix0)
NUMTRELLIS = 1
numKeys = NUMTRELLIS * 16
I2C_BUS = 1
trellis.begin((0x70, I2C_BUS))

# light up all the LEDs in order
for i in range(int(numKeys)):
trellis.setLED(i)
trellis.writeDisplay()
time.sleep(0.05)
# then turn them off
for i in range(int(numKeys)):
trellis.clrLED(i)
trellis.writeDisplay()
time.sleep(0.05)


posRecord = {'attack': [], 'decay': [], 'sustain': [], 'release': []}
octaval = {'A':False,'B':False,'C':False}
pitch = 0
tone = None
old_tone = None
note = None
volume = 0
#m = alsaaudio.Mixer('PCM')
#mastervol = m.getvolume()
sounds = {}
values = [0]*8
oldvalues = [0]*8
font = pygame.font.SysFont("comicsansms", 22)


while True:
fps.tick_busy_loop(FRAMERATE)

#print(fps.get_time())
update = False
#m.setvolume(int(round(MCP3008(4).value*100)))
#mastervol = m.getvolume()
values = [0]*8
for i in range(8):
# The read_adc function will get the value of the specified channel (0-7).
values[i] = mcp.read_adc(i)/1000
if values[i] >= 1:
values[i] = 1
# Print the ADC values.
#print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} | {5:>4} | {6:>4} | {7:>4} |'.format(*values))
#print(str(pygame.mixer.Channel(0).get_busy())+" "+str(pygame.mixer.Channel(1).get_busy())+" "+str(pygame.mixer.Channel(2).get_busy())+" "+str(pygame.mixer.Channel(3).get_busy())+" "+str(pygame.mixer.Channel(4).get_busy())+" "+str(pygame.mixer.Channel(5).get_busy())+" "+str(pygame.mixer.Channel(6).get_busy())+" "+str(pygame.mixer.Channel(7).get_busy()))

Sval = values[2]*Ssec
Aval = values[0]*Asec
if Sval == 1:
Dval = 0
else:
Dval = values[1]*Dsec
if Sval < MINSEC:
Rval = 0
else:
Rval = values[3]*Rsec

if Aval > 0:
if values[4] <= MINSEC: values[4] = MINSEC
Acurve = [round(values[4]*4,3),round(100/pow(Aval,(values[4]*4)),3)]
else:
Acurve = False
if Dval > 0:
if values[5] <= MINSEC: values[5] = MINSEC
Dcurve = [round(values[5]*4,3),round(((Sval*100)-100)/pow(Dval,(values[5]*4)),3)]
else:
Dcurve = False
Shold = values[6]*4*Ssec
if Rval > 0 and Sval > 0:
if values[7] <= MINSEC: values[7] = MINSEC
Rcurve = [round(values[7]*4,3),round(-Sval*100/pow(Rval,(values[7]*4)),3)]
else:
Rcurve = False

if update:
screen.fill((0, 0, 0))

scrnvals = ["A: "+str(round(Aval,2))+"s","D: "+str(round(Dval,2))+"s","S: "+str(round(Sval,2)),"R: "+str(round(Rval,2))+"s","H: "+str(round(Shold,2))+"s","ENV: "+str(round(Aval,2)+round(Dval,2)+round(Shold,2)+round(Rval,2))+"s"]

for line in range(len(scrnvals)):
text = font.render(scrnvals[line], True, (0, 128, 0))
screen.blit(text,(60*line+40, 250))

# Width of one second in number of pixels
ASCALE = 20
DSCALE = 20
SSCALE = 20
RSCALE = 20

if Aval >= MINSEC:
if Aval <= 1:
ASCALE = 80
else:
ASCALE = 20
# Attack
for yPos in range(0,101):
xPos = round(pow((yPos/Acurve[1]),(1/Acurve[0]))*ASCALE)
posRecord['attack'].append((int(xPos) + 40, int(-yPos) + 130))

if len(posRecord['attack']) > 1:
pygame.draw.lines(screen, DARKRED, False, posRecord['attack'], 2)

if Dval >= MINSEC:
if Dval <= 1:
DSCALE = 80
else:
DSCALE = 20
# Decay
for yPos in range(100,round(Sval*100)-1,-1):
xPos = round(pow(((yPos-100)/Dcurve[1]),(1/Dcurve[0]))*DSCALE)
#print(str(yPos)+" = "+str(Dcurve[1])+"*"+str(xPos)+"^"+str(Dcurve[0])+"+100")
posRecord['decay'].append((int(xPos) + 40 + round(Aval*ASCALE), int(-yPos) + 130))

if len(posRecord['decay']) > 1:
pygame.draw.lines(screen, DARKGREEN, False, posRecord['decay'], 2)

# Sustain
if Shold >= MINSEC:
for xPos in range(0,round(Shold*SSCALE)):
posRecord['sustain'].append((int(xPos) + 40 + round(Aval*ASCALE) + round(Dval*DSCALE), int(100-Sval*100) + 30))

if len(posRecord['sustain']) > 1:
pygame.draw.lines(screen, DARKYELLOW, False, posRecord['sustain'], 2)

if Rval >= MINSEC:
if Rval <= 1:
RSCALE = 80
else:
RSCALE = 20
# Release
for yPos in range(round(Sval*100),-1,-1):
xPos = round(pow(((yPos-round(Sval*100))/Rcurve[1]),(1/Rcurve[0]))*RSCALE)
#print(str(xPos)+" = (("+str(yPos)+"-"+str(round(Sval*100))+")/"+str(Rcurve[1])+")^(1/"+str(Rcurve[0])+")")
posRecord['release'].append((int(xPos) + 40 + round(Aval*ASCALE) + round(Dval*DSCALE) + round(Shold*SSCALE), int(-yPos) + 130))

if len(posRecord['release']) > 1:
pygame.draw.lines(screen, DARKBLUE, False, posRecord['release'], 2)

posRecord = {'attack': [], 'decay': [], 'sustain': [], 'release': []}

pygame.display.update()

tone = None
pitch = 0
time.sleep(MINSEC)
# If a button was just pressed or released...
if trellis.readSwitches():
# go through every button
for i in range(numKeys):
# if it was pressed, turn it on
if trellis.justPressed(i):
print('v{0}'.format(i))
trellis.setLED(i)

if i == 0:
octaval['A'] = True
elif i == 4:
octaval['B'] = True
elif i == 8:
octaval['C'] = True
else:
pitch = buttons[i]
button = i


# if it was released, turn it off
if trellis.justReleased(i):
print('^{0}'.format(i))
trellis.clrLED(i)
if i == 0:
octaval['A'] = False
elif i == 4:
octaval['B'] = False
elif i == 8:
octaval['C'] = False
else:
sounds[i].stopSound()

# tell the trellis to set the LEDs we requested
trellis.writeDisplay()

octa = ''
if octaval['A']:
octa += 'A'
if octaval['B']:
octa += 'B'
if octaval['C']:
octa += 'C'
if octa == '':
octa = 'BASE'

if pitch > 0:
tone = FREQ['C0']*pow(2,int(octaves[octa]))*pitch


if tone:
sounds[button] = Note(tone)
_thread.start_new_thread(sounds[button].playSound,(Aval, Dval, Sval, Rval, Acurve, Dcurve, Shold, Rcurve, fps))
print(str(tone))

GPIO.cleanup()

最佳答案

你现在正在做的就是发出声音并放弃所有控制,直到声音播放完毕。这里的一般方法是更改​​它并一次处理一个样本并将其推送到定期播放的缓冲区。该样本将是您所有声音/信号的总和。这样,您可以为每个样本决定是否要触发新的声音,并且您可以决定在已经播放的音符时播放该音符多长时间。一种方法是安装一个计时器,如果您想要 48kHz 的采样率,该计时器每 1/48000 秒触发一次回调函数。

如果您需要处理大量声音,但不是一个线程处理一个声音,您仍然可以使用多线程进行并行处理,在我看来,这有点过分了。是否有必要取决于您进行了多少过滤/处理以及您的程序的有效/无效程度。

例如

sample_counter = 0
output_buffer = list()

def callback_fct():
pitch_0 = 2
pitch_1 = 4
sample_counter += 1 #time in ms
signal_0 = waveform(sample_counter * pitch_0)
signal_1 = waveform(sample_counter * pitch_1)
signal_out = signal_0 * 0.5 + signal_1 *0.5
output_buffer.append(signal_out)
return 0

if __name__ == "__main__":
call_this_function_every_ms(callback_fct)
play_sound_from_outputbuffer() #plays sound from outputbuffer by popping samples from the beginning of the list.

类似这样的事情。 waveform() 函数会根据实际时间乘以所需的音调为您提供样本值。在C中,你可以用指针来完成所有这些操作,在波表末尾溢出,所以当你应该重置你的sample_counter而不会在波形中出现毛刺时,你不必处理这个问题(它会变得非常大)很快)。但我确信,还有更多“Pythonic”的方法。使用较低级语言执行此操作的另一个充分理由是速度。一旦涉及到真正的 DSP,您就会计算处理器时钟周期。到那时,Python 可能会有太多的开销。

关于python - 在 Raspberry Pi 上优化 Python 合成器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45183844/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com