- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在努力将我的(困惑的)代码从tensorflow核心传递到Estimator
范例,尤其是使用Experiments
- 与learn_runner.run
>。但实际上我在向神经网络提供数据时遇到了问题。
我想要实现的目标实际上非常接近 TensorFlow 和 tf.TextLineReader
的所有示例所完成的目标,例如https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/census/customestimator/trainer/model.py#L297 ,尽管我不是从磁盘上的文件加载数据,而是通过网络服务加载数据。
根据我的理解(并查看 tensorflow.python.estimator._train_model()
的代码),input_fn
仅调用一次,而不是在每次迭代时调用。我可以轻松加载所有数据,然后执行以下操作:
def input_fn():
data = # all data in memory
batch = tf.train.input_producer(tf.constant(data))
return batch.dequeue_many(batch_size)
但是这是不可持续的,因为我的数据不适合内存。我正在尝试做类似的事情:
1. load first piece of data (say N lines)
2. consume it by batches in a queue just like the input_fn above
2'. feed this queue asynchronously with new data when it's almost empty
我知道如何在“纯”tf 中做到这一点,例如How to prefetch data using a custom python function in tensorflow或Tensorflow: custom data load + asynchronous computation但我发现很难将其转换为 Experiment
范例,因为我无法访问 session 来自行加载内容,也无法访问图表来在内部追加操作。
编辑
我设法使用tf.py_func()
来做到这一点,例如:
class Reader(object):
# a Python object that can load data and have some intelligence, not related to TF, initialized with batch_sized
def read_up_to(self):
"""Reads up to batch_size elements loaded in Python"""
def input_fn():
reader = Reader() # instantiated once
return tf.py_func(reader.read_up_to, inp=[], Tout=...)
我工作得很好,尽管速度有点慢(正如预期的那样,有一种从 C++ 执行到 Python 的方法,会引入大约 50% 的延迟)。我正在尝试通过将读取器异步读取的 Python 数据放入特定的 TensorFlow 队列来解决此问题,这样就可以在不将数据从 Python 传递到 C++ 的情况下完成加载(就像上面的两个链接一样)。
最佳答案
我有一个similar issue我通过使用 SessionRunHook 找到了修复程序。该 Hook (还有其他 Hook )允许您在创建 session 后立即初始化操作。
关于python - TensorFlow实验: how to avoid loading all data in memory with input_fn?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45191474/
在 ARM 中,内存类型指定为: 正常 设备 强烈有序 在Device type里面,好像这个类型也可以区分 不可共享的设备内存 可共享设备内存 不可共享和可共享设备内存有什么区别?我们如何分别使用这
在 ARM 中,内存类型指定为: 正常 设备 强烈有序 在Device type里面,好像这个类型也可以区分 不可共享的设备内存 可共享设备内存 不可共享和可共享设备内存有什么区别?我们如何分别使用这
This diagram很清楚不同YARN和Spark内存相关设置之间的关系,除了spark.python.worker.memory。 spark.python.worker.memory 如何适应
我正在尝试使用复杂的if-else决策树来实现GLSL片段着色器。不幸的是,着色器编译器很早就失败,并出现“语法错误-内存耗尽”错误。 GLSL中的代码大小或决策树深度是否有任何限制?有什么建议如何克
什么是“标记内存”,它如何帮助减小程序大小? 最佳答案 您可能指的是 tagged union ,或更具体地说是硬件实现,如 LISP 机器中使用的标记架构。基本上是一种存储具有类型信息的数据的方法。
我的内存有问题。我不明白为什么当我的程序长时间运行时 Go 使用越来越多的内存(从不释放它)。 第一次分配后,程序使用了将近 9 MB 的内存。然后在 12 小时后,它开始以指数方式使用更多内存,直到
在 Windows 机器上,MATLAB 用户可以使用 memory或 feature memstats命令。但是,这些都不能在机器上工作,失败如下: >> memory??? Error using
引导 Linux 内核时,可以在 RAM 中加载 initramfs 存档和 DTB 文件,并将这些物理地址指定给内核。例如,使用 U-Boot,您可以执行以下操作: bootz 0x80008000
我正在学习虚拟内存的概念,但是这个问题让我困惑了一段时间。由于大多数现代计算机都使用虚拟内存,因此当程序正在执行时,操作系统应该在 RAM 和磁盘之间将数据分页进出。但为什么我们仍然遇到“内存不足”的
我在 Colab Pro+(使用高 RAM 选项)上运行神经网络时发现了这个问题。 运行时错误:CUDA 内存不足。尝试分配 8.00 GiB(GPU 0;15.90 GiB 总容量;12.04 Gi
当我在任何地方阅读基于操作系统的书籍时,考虑到时间限制和开销很高,从内存和 I\O(子系统)获取数据是昂贵的,这就是为什么在某些硬件制造商中提供一些其他方式来访问它们,如ARM7 some ISAs像
据我所知,ADS v.10 尝试将查询结果保留在内存中,直到它变得非常大。对于 __output 表和临时表也应该如此。当结果变大时,交换声明。 问题是为查询、 worker 等设置了什么内存限制?可
序言 我正在写一个小演示文稿来列出使用 Docker 时的一些“陷阱”,我也遇到了自己的一个问题。 在解释让 Docker 在没有内存限制的情况下运行的危险时,我发现它的行为不像我预期的那样。 我使用
我们有一个 ASP.NET 项目(40 个左右的 Web 表单、50 个表、相当标准的 IO 内容,并尽可能减少),很快需要部署。系统上大约有 100 个并发用户,但任何时候只有大约 20 个用户在使
我在 dotcloud 上使用 redis 内存存储,但尽管 key 已过期,但它的 used_memory 再也不会下降。从 redis-cli 使用 flushdb 或 flushall 不会导致
我使用的是 Xcode 10.2.1 和 macOS Catalina Developer Beta 2。每当我尝试使用内存图调试器时,我都会收到此错误: Memory Graph Debugger:
所以我一直在寻找这个问题的解决方案有一段时间了。我编写了一个程序来从两个单独的文本文件中获取数据,对其进行解析,然后输出到另一个文本文件和一个 ARFF 文件以供 Weka 分析。我遇到的问题是我编写
对不起,我对 erlang 文档中的以下描述不太清楚: erlang:memory() -> [{Type, Size}] with Type: "total" means: "The total a
在查看示例合约时,有时会在带有“内存”的方法中声明数组,有时则不会。有什么区别? 最佳答案 如果没有内存关键字,Solidity会尝试在存储中声明变量。 首席 Solidity 开发者 chriset
我不明白Matlab并行计算工具箱中的parfor cicle是如何与内存一起工作的:我读到它在所有worker之间共享内存(然后我认为每个worker(核心)都可以访问感兴趣的内存位置而无需制作本地
我是一名优秀的程序员,十分优秀!