- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
让我们以下面这个数据框为例:
df = pd.DataFrame({
'a':[1,2,3,4],
'b':[2,4,6,8],
'c':[True,True,False,False]
})
>df
a b c
0 1 2 True
1 2 4 True
2 3 6 False
3 4 8 False
我有不同的方法来选择列 a,其中列 c 等于 True:
第一种方式:
df.loc[df.c == True, 'a']
第二种方式:
df.loc[df['c'] == True, 'a']
第三种方式:
df.a[df['c'] == True]
所有这些都得到相同的结果:
0 1
1 2
Name: a, dtype: int64
还有其他操作,例如 df.a[df.c == True] 可以做到这一点。我只是想知道索引操作 (.loc) ([ ]) 和 (.) 之间有什么区别吗?
最佳答案
但是,.a 和 ["a"] 之间的 pandas 没有没有区别(@cricket_007 链接),如此处回答:In a Pandas DataFrame, what's the difference between using squared brackets or dot to 'cal a column?
<小时/>当您使用 [] 时,您正在传递 True 和 False 值的列表
[df.c]
打印:
[0 True
1 True
2 False
3 False
Name: c, dtype: bool]
还有:
type([df.c]) #prints 'list'
换句话说,它们是相同的。
df[df.c]
df[[True,True,False,False]]
这不等于 .loc,一个数据帧函数,考虑到您的示例,它似乎是最快的
%timeit df[df.c].a
1000 loops, best of 3: 437 µs per loop
%timeit df.a[df.c]
1000 loops, best of 3: 387 µs per loop
%timeit df.loc[df.c, 'a'] #equal to df.loc[df["c"], "a"]
1000 loops, best of 3: 210 µs per loop
关于python - 索引操作 (.loc) ([ ]) 和 (.) 有什么区别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45352714/
我在 Apple 的相关文档中没有找到这个:是否必须包含字段“loc-args”,即使您不需要任何参数并且它是空的,当提供字段“loc-key”时“? 谢谢 最佳答案 loc-key A key to
我有一个 Fortran 90 项目,它广泛使用 loc 函数来获取数组的地址(与 Matlab 互操作的 API 的一部分)。 这段代码在 Mac 和 Linux 上编译并运行在 Intel 和 g
让我先概述一下我要解决的问题。我试图根据包含“-1”的行中的其他两个值,将值“-1”替换为同一列中的另一个值。为了更清楚,这是一个例子。在下面的数据框中,“所有者”列中有两个缺失值。我想要的是将每个
我所做的所有研究都指向使用 loc作为通过 col(s) 值过滤数据帧的方法,今天我正在阅读 this我通过我测试的例子发现,loc当按值过滤 cols 时,不是真的需要: 前任: df = pd.D
这个问题已经有答案了: How to deal with SettingWithCopyWarning in Pandas (21 个回答) 已关闭 4 年前。 假设我有一个像这样的数据框,第一列“密
我想在我的应用程序打开时将来自推送通知负载的 loc-args 数组的第二个元素设置为 loc-key 转换,例如在 didReceiveRemoteNotification 方法中。 有效负载中的
以下赋值有何不同? df.loc[rows, [col]] = ... df.loc[rows, col] = ... 例如: r = pd.DataFrame({"response": [1,1,1
在给定 h 文件中的 LOC 数量的情况下,我可以估计最佳代码(桌面应用程序)中的 C++ LOC 数量是多少? 背景:我正在进行工作量估算和将 C++ 软件移植到 C# 的计划。 我的第一个想法是创
目标:通过实现可重用的 JS(或 ASP?)消除初始 DOM 中的冗余。 在这个例子中,我想写一些 JS 来将 div @id loc-A 的内容“bump”到 div @id loc-B,而不必在页
我正在尝试提高代码性能。我使用 Pandas 0.19.2 和 Python 3.5。 我刚刚意识到 .loc 一次写入一大堆值的速度非常不同,具体取决于数据帧初始化。 谁能解释为什么,并告诉我什么是
自己试试看: import pandas as pd s=pd.Series(xrange(5000000)) %timeit s.loc[[0]] # You need pandas 0.15.1
是否可以找到在特定提交中添加的存储库的总代码行数? 最佳答案 流失扩展做我需要的: hg churn --rev 100 关于mercurial - 查找在特定提交中添加的存储库 LOC,我们在Sta
虽然 LOC(# 代码行数)是衡量代码复杂性的一个有问题的方法,但它是最流行的方法,如果使用得非常小心,至少可以粗略估计代码库的相对复杂性(即,如果一个程序是 10KLOC)另一个是 100KLOC,
我即将在大型项目上使用SonarQube,并一直在搜索有关LOC限制的信息进行分析,但他们的网站上没有相关信息。有没有?如果是的话,限制是多少? 最佳答案 无论是在单个项目内还是跨实例,都没有硬性限制
我正在使用 SonarQube Developer Edition 5.6.7 (LTS) 并购买了支持 500 万 LOC 的许可证。我们通过拥有项目 key 和模板来使用 RBAC 和 Sonar
是否有人遇到过这样的情况:用 Java 编写并由(例如)法国程序员编写的现有代码库必须转换为英语程序员可以理解的代码?这里的问题是变量/方法/类名称、注释等都将采用该特定语言。 现在有可用的自动化解决
给定 df 'AB': A = pd.DataFrame([[1, 5, 2], [2, 4, 4], [3, 3, 1], [4, 2, 2], [5, 1, 4]], colum
我有一个像这样的数据框: import pandas as pd df = pd.DataFrame({'col1': ['abc', 'def', 'tre'],
如果我有一个 pandas.DataFrame具有不同类型的列(例如 int64 和 float64 ),从 int 获取单个元素列 .loc索引将输出转换为 float : import panda
我有一个大约 400k IP 的列表(存储在 pandas DataFrame df_IP 中)使用 maxming geoIP 数据库进行地理定位。我使用城市版本,并检索城市、纬度、经度和县代码(法
我是一名优秀的程序员,十分优秀!