gpt4 book ai didi

python - 使用自己的模型运行 TF 对象检测 API 时出现 FailedPreconditionError

转载 作者:太空宇宙 更新时间:2023-11-03 14:58:12 25 4
gpt4 key购买 nike

我正在尝试使用自己的数据集运行我在 TensorFlow 对象检测 API 中所做的模型,但是在运行脚本时出现以下错误:

python object_detection/detect_test.py

Traceback (most recent call last):
File "object_detection/detect_test.py", line 81, in <module>
feed_dict={image_tensor: image_np_expanded})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 997, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value SecondStageBoxPredictor/ClassPredictor/biases
[[Node: SecondStageBoxPredictor/ClassPredictor/biases/read = Identity[T=DT_FLOAT, _class=["loc:@SecondStageBoxPredictor/ClassPredictor/biases"], _device="/job:localhost/replica:0/task:0/cpu:0"](SecondStageBoxPredictor/ClassPredictor/biases)]]

Caused by op u'SecondStageBoxPredictor/ClassPredictor/biases/read', defined at:
File "object_detection/detect_test.py", line 40, in <module>
tf.import_graph_def(od_graph_def, name='')
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/importer.py", line 311, in import_graph_def
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
self._traceback = _extract_stack()

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value SecondStageBoxPredictor/ClassPredictor/biases
[[Node: SecondStageBoxPredictor/ClassPredictor/biases/read = Identity[T=DT_FLOAT, _class=["loc:@SecondStageBoxPredictor/ClassPredictor/biases"], _device="/job:localhost/replica:0/task:0/cpu:0"](SecondStageBoxPredictor/ClassPredictor/biases)]]

这有点奇怪,因为我正在关注 their tutorial对于模型使用,错误可能是说某些变量未初始化。

这是我的代码:

Detect_test.py

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

from utils import label_map_util
from utils import visualization_utils as vis_util

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/home/jun/PycharmProjects/tf_workspace/models/output_inference_graph_151.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/home/jun/PycharmProjects/tf_workspace/models/object_detection/data/pascal_label_map_new.pbtxt'

NUM_CLASSES = 3

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)

# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'object_detection/test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)

在这种情况下,如果您能提供任何帮助,我将不胜感激!提前致谢!

最佳答案

插入sess.run(tf.global_variable_initializers())就在with tf.Session(graph=detection_graph) as sess:之后。

关于python - 使用自己的模型运行 TF 对象检测 API 时出现 FailedPreconditionError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45354025/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com