- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
在下面的代码中,我希望稠密矩阵 B
左乘稀疏矩阵 A
,但出现错误。
import tensorflow as tf
import numpy as np
A = tf.sparse_placeholder(tf.float32)
B = tf.placeholder(tf.float32, shape=(5,5))
C = tf.matmul(B,A,a_is_sparse=False,b_is_sparse=True)
sess = tf.InteractiveSession()
indices = np.array([[3, 2], [1, 2]], dtype=np.int64)
values = np.array([1.0, 2.0], dtype=np.float32)
shape = np.array([5,5], dtype=np.int64)
Sparse_A = tf.SparseTensorValue(indices, values, shape)
RandB = np.ones((5, 5))
print sess.run(C, feed_dict={A: Sparse_A, B: RandB})
错误信息如下:
TypeError: Failed to convert object of type <class 'tensorflow.python.framework.sparse_tensor.SparseTensor'>
to Tensor. Contents: SparseTensor(indices=Tensor("Placeholder_4:0", shape=(?, ?), dtype=int64), values=Tensor("Placeholder_3:0", shape=(?,), dtype=float32), dense_shape=Tensor("Placeholder_2:0", shape=(?,), dtype=int64)).
Consider casting elements to a supported type.
我的代码有什么问题吗?
我正在按照 documentation 执行此操作它说我们应该使用a_is_sparse
来表示第一个矩阵是否稀疏,与b_is_sparse
类似。为什么我的代码是错误的?
按照vijay的建议,我应该使用C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)
我尝试了这个,但遇到了另一个错误:
Caused by op u'SparseToDense', defined at:
File "a.py", line 19, in <module>
C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)
File "/home/fengchao.pfc/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 845, in sparse_tensor_to_dense
name=name)
File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 710, in sparse_to_dense
name=name)
File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_sparse_ops.py", line 1094, in _sparse_to_dense
validate_indices=validate_indices, name=name)
File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
op_def=op_def)
File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): indices[1] = [1,2] is out of order
[[Node: SparseToDense = SparseToDense[T=DT_FLOAT, Tindices=DT_INT64, validate_indices=true, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_Placeholder_4_0_2, _arg_Placeholder_2_0_0, _arg_Placeholder_3_0_1, SparseToDense/default_value)]]
谢谢大家对我的帮助!
最佳答案
在tf.matmul
中,标志a_is_sparse
和b_is_sparse
并不指示操作数是SparseTensors
,而是指示,它们是调用更有效的方法来计算两个密集张量乘法的算法提示。在你的代码中应该是:
C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)
要对 SparseTensor
和 dense
张量进行 matmul,您还可以使用 tf.sparse_tensor_dense_matmul()
代替。
关于python - tensorflow :使用 tf.matmul 将稀疏矩阵与稠密矩阵相乘时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45734487/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!