- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个函数,它是对相对较大的数据集进行插值。我使用线性插值 interp1d
所以有很多不光滑的尖点,比如this . quad
scipy 的函数会因为尖点而发出警告。我想知道如何在没有警告的情况下进行集成?
谢谢!
谢谢大家的回答。在这里我总结了解决方案,以防其他人遇到同样的问题:
points
以避免警告并获得更准确的结果。 limit=50
)quad
, 所以我选择 quad(f_interp, a, b, limit=2*p.shape[0], points=p)
避免所有这些警告。a
和 b
数据集的起点或终点不同x
, 积分 p
可以通过p = x[where(x>=a and x<=b)]
来选择最佳答案
quad
接受一个可选参数,称为 points
。根据文档:
points : (sequence of floats,ints), optional
A sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinuities). The sequence does not have to be sorted.
在您的情况下,“困难的”点
恰好是数据点的 x 坐标。这是一个例子:
import numpy as np
from scipy.integrate import quad
np.random.seed(123)
# generate random data set
x = np.arange(0,10)
y = np.random.rand(10)
# construct a linear interpolation function of the data set
f_interp = lambda xx: np.interp(xx, x, y)
现在将 quad
调用为
quad(f_interp,0,9)
返回一系列警告以及
(4.89770017785734, 1.3762838395159349e-05)
如果您提供 points
参数,即
quad(f_interp,0,9, points = x)
它没有发出警告,结果是
(4.8977001778573435, 5.437539505167948e-14)
这也意味着与之前的调用相比,结果的准确性要高得多。
关于python - scipy -- 如何积分线性插值函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44811581/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!