- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个极其稀疏的结构化矩阵。我的矩阵每列只有一个非零条目。但是它很大(10k * 1M)并以以下形式给出(例如uisng随机值)
rows = np.random.randint(0, 10000, 1000000)
values = np.random.randint(0,10,1000000)
其中 rows 为我们提供了每列中非零条目的行号。我想要与 S 进行快速矩阵乘法,我现在正在进行以下操作 - 我将此形式转换为稀疏矩阵 (S) 并执行 S.dot(X) 以与矩阵 X(可以是稀疏或密集)相乘。
S=scipy.sparse.csr_matrix( (values, (rows, scipy.arange(1000000))), shape = (10000,1000000))
对于大小为 1M * 2500 且 nnz(X)=8M 的 X,创建 S 需要 178 毫秒,应用它需要 255 毫秒。所以我的问题是,鉴于我的 S 如上所述,做 SX(其中 X 可能稀疏或密集)的最佳方法是什么。由于创建 S 本身非常耗时,所以我在考虑一些临时的东西。我确实尝试使用循环创建一些东西,但它甚至没有关闭。
简单的循环过程看起来像这样
SX = np.zeros((rows.size,X.shape[1]))
对于范围内的我(X.shape[0]):
SX[行[i],:]+=值[i]*X[i,:]
返回 SX
我们能让它变得高效吗?
非常感谢任何建议。谢谢
最佳答案
方法 #1
鉴于第一个输入中每列只有一个条目,我们可以使用 np.bincount
使用输入 - rows
、values
和X
从而避免创建稀疏矩阵 S
-
def sparse_matrix_mult(rows, values, X):
nrows = rows.max()+1
ncols = X.shape[1]
nelem = nrows * ncols
ids = rows + nrows*np.arange(ncols)[:,None]
sums = np.bincount(ids.ravel(), (X.T*values).ravel(), minlength=nelem)
out = sums.reshape(ncols,-1).T
return out
sample 运行-
In [746]: import numpy as np
...: from scipy.sparse import csr_matrix
...: import scipy as sp
...:
In [747]: np.random.seed(1234)
...: m,n = 3,4
...: rows = np.random.randint(0, m, n)
...: values = np.random.randint(2,10,n)
...: X = np.random.randint(2, 10, (n,5))
...:
In [748]: S = csr_matrix( (values, (rows, sp.arange(n))), shape = (m,n))
In [749]: S.dot(X)
Out[749]:
array([[42, 27, 45, 78, 87],
[24, 18, 18, 12, 24],
[18, 6, 8, 16, 10]])
In [750]: sparse_matrix_mult(rows, values, X)
Out[750]:
array([[ 42., 27., 45., 78., 87.],
[ 24., 18., 18., 12., 24.],
[ 18., 6., 8., 16., 10.]])
方法 #2
使用np.add.reduceat
替换np.bincount
-
def sparse_matrix_mult_v2(rows, values, X):
nrows = rows.max()+1
ncols = X.shape[1]
scaled_ar = X*values[:,None]
sidx = rows.argsort()
rows_s = rows[sidx]
cut_idx = np.concatenate(([0],np.flatnonzero(rows_s[1:] != rows_s[:-1])+1))
sums = np.add.reduceat(scaled_ar[sidx],cut_idx,axis=0)
out = np.empty((nrows, ncols),dtype=sums.dtype)
row_idx = rows_s[cut_idx]
out[row_idx] = sums
return out
运行时测试
我无法在问题中提到的尺寸上运行它,因为这些尺寸太大我无法处理。所以,在减少的数据集上,这就是我得到的 -
In [149]: m,n = 1000, 100000
...: rows = np.random.randint(0, m, n)
...: values = np.random.randint(2,10,n)
...: X = np.random.randint(2, 10, (n,2500))
...:
In [150]: S = csr_matrix( (values, (rows, sp.arange(n))), shape = (m,n))
In [151]: %timeit csr_matrix( (values, (rows, sp.arange(n))), shape = (m,n))
100 loops, best of 3: 16.1 ms per loop
In [152]: %timeit S.dot(X)
1 loop, best of 3: 193 ms per loop
In [153]: %timeit sparse_matrix_mult(rows, values, X)
1 loop, best of 3: 4.4 s per loop
In [154]: %timeit sparse_matrix_mult_v2(rows, values, X)
1 loop, best of 3: 2.81 s per loop
因此,所提出的方法似乎并没有在性能上超过 numpy.dot
,但它们在内存效率方面应该不错。
对于稀疏X
对于稀疏的X
,我们需要进行一些修改,如下所列的修改方法-
from scipy.sparse import find
def sparse_matrix_mult_sparseX(rows, values, Xs): # Xs is sparse
nrows = rows.max()+1
ncols = Xs.shape[1]
nelem = nrows * ncols
scaled_vals = Xs.multiply(values[:,None])
r,c,v = find(scaled_vals)
ids = rows[r] + c*nrows
sums = np.bincount(ids, v, minlength=nelem)
out = sums.reshape(ncols,-1).T
return out
关于python - 与极稀疏矩阵相乘的最快方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46456396/
我想了解 Ruby 方法 methods() 是如何工作的。 我尝试使用“ruby 方法”在 Google 上搜索,但这不是我需要的。 我也看过 ruby-doc.org,但我没有找到这种方法。
Test 方法 对指定的字符串执行一个正则表达式搜索,并返回一个 Boolean 值指示是否找到匹配的模式。 object.Test(string) 参数 object 必选项。总是一个
Replace 方法 替换在正则表达式查找中找到的文本。 object.Replace(string1, string2) 参数 object 必选项。总是一个 RegExp 对象的名称。
Raise 方法 生成运行时错误 object.Raise(number, source, description, helpfile, helpcontext) 参数 object 应为
Execute 方法 对指定的字符串执行正则表达式搜索。 object.Execute(string) 参数 object 必选项。总是一个 RegExp 对象的名称。 string
Clear 方法 清除 Err 对象的所有属性设置。 object.Clear object 应为 Err 对象的名称。 说明 在错误处理后,使用 Clear 显式地清除 Err 对象。此
CopyFile 方法 将一个或多个文件从某位置复制到另一位置。 object.CopyFile source, destination[, overwrite] 参数 object 必选
Copy 方法 将指定的文件或文件夹从某位置复制到另一位置。 object.Copy destination[, overwrite] 参数 object 必选项。应为 File 或 F
Close 方法 关闭打开的 TextStream 文件。 object.Close object 应为 TextStream 对象的名称。 说明 下面例子举例说明如何使用 Close 方
BuildPath 方法 向现有路径后添加名称。 object.BuildPath(path, name) 参数 object 必选项。应为 FileSystemObject 对象的名称
GetFolder 方法 返回与指定的路径中某文件夹相应的 Folder 对象。 object.GetFolder(folderspec) 参数 object 必选项。应为 FileSy
GetFileName 方法 返回指定路径(不是指定驱动器路径部分)的最后一个文件或文件夹。 object.GetFileName(pathspec) 参数 object 必选项。应为
GetFile 方法 返回与指定路径中某文件相应的 File 对象。 object.GetFile(filespec) 参数 object 必选项。应为 FileSystemObject
GetExtensionName 方法 返回字符串,该字符串包含路径最后一个组成部分的扩展名。 object.GetExtensionName(path) 参数 object 必选项。应
GetDriveName 方法 返回包含指定路径中驱动器名的字符串。 object.GetDriveName(path) 参数 object 必选项。应为 FileSystemObjec
GetDrive 方法 返回与指定的路径中驱动器相对应的 Drive 对象。 object.GetDrive drivespec 参数 object 必选项。应为 FileSystemO
GetBaseName 方法 返回字符串,其中包含文件的基本名 (不带扩展名), 或者提供的路径说明中的文件夹。 object.GetBaseName(path) 参数 object 必
GetAbsolutePathName 方法 从提供的指定路径中返回完整且含义明确的路径。 object.GetAbsolutePathName(pathspec) 参数 object
FolderExists 方法 如果指定的文件夹存在,则返回 True;否则返回 False。 object.FolderExists(folderspec) 参数 object 必选项
FileExists 方法 如果指定的文件存在返回 True;否则返回 False。 object.FileExists(filespec) 参数 object 必选项。应为 FileS
我是一名优秀的程序员,十分优秀!