- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我试图在训练后保存自定义估算器,但总是收到错误。我正在使用 TensorFlow v.1.4,并尝试了各种我可以在网络、教程和示例中搜索的解决方案。
(来源:我开始按照 here 上的教程学习,但修改了代码以适应)。
这是我的代码:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 16 10:17:59 2017
@author: ali
"""
import tensorflow as tf
import numpy as np
import shutil
# Define variables
SEQ_LEN = 10
DEFAULTS = [[0.0] for x in range(0, SEQ_LEN)]
BATCH_SIZE = 20
TIMESERIES_COL = 'rawdata'
N_OUTPUTS = 2 # in each sequence, 1-8 are features, and 9-10 is label
N_INPUTS = SEQ_LEN - N_OUTPUTS
N_EPOCHS = 100
LSTM_SIZE = 3 # number of hidden layers in each of the LSTM cells
LEARNING_RATE = 0.01
def create_time_series():
freq = (np.random.random()*0.5) + 0.1 # 0.1 to 0.6
ampl = np.random.random() + 0.5 # 0.5 to 1.5
x = np.sin(np.arange(0,SEQ_LEN) * freq) * ampl
return x
def to_csv(filename, N):
with open(filename, 'w') as ofp:
for lineno in range(0, N):
seq = create_time_series()
line = ",".join(map(str, seq))
ofp.write(line + '\n')
# read data and convert to needed format
def read_dataset(filename, mode=tf.contrib.learn.ModeKeys.TRAIN):
def _input_fn():
num_epochs = N_EPOCHS if mode == tf.contrib.learn.ModeKeys.TRAIN else 1
# could be a path to one file or a file pattern.
input_file_names = tf.train.match_filenames_once(filename)
filename_queue = tf.train.string_input_producer(input_file_names, num_epochs=num_epochs)
reader = tf.TextLineReader()
_, value = reader.read_up_to(filename_queue, num_records=BATCH_SIZE)
value_column = tf.expand_dims(value, -1)
print('readcsv={}'.format(value_column))
# all_data is a list of tensors
all_data = tf.decode_csv(value_column, record_defaults=DEFAULTS)
inputs = all_data[:len(all_data)-N_OUTPUTS] # first few values
label = all_data[len(all_data)-N_OUTPUTS : ] # last few values
# from list of tensors to tensor with one more dimension
inputs = tf.concat(inputs, axis=1)
label = tf.concat(label, axis=1)
print('inputs={}'.format(inputs))
return {TIMESERIES_COL: inputs}, label # dict of features, label
return _input_fn
# create the inference model
def simple_rnn(features, labels, mode, params):
# 0. Reformat input shape to become a sequence
x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
#print 'x={}'.format(x)
# 1. configure the RNN
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_SIZE, forget_bias=1.0)
outputs, _ = tf.nn.static_rnn(lstm_cell, x, dtype=tf.float32)
# slice to keep only the last cell of the RNN
outputs = outputs[-1]
#print 'last outputs={}'.format(outputs)
# output is result of linear activation of last layer of RNN
weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS]))
bias = tf.Variable(tf.random_normal([N_OUTPUTS]))
predictions = tf.matmul(outputs, weight) + bias
# 2. loss function, training/eval ops
if mode == tf.contrib.learn.ModeKeys.TRAIN or mode == tf.contrib.learn.ModeKeys.EVAL:
loss = tf.losses.mean_squared_error(labels, predictions)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=params["l_rate"])
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
eval_metric_ops = {"rmse": tf.metrics.root_mean_squared_error(labels, predictions)}
else:
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
predictions_dict = {"predicted": predictions}
# 4. return ModelFnOps
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions_dict,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
def get_train():
return read_dataset('train.csv', mode=tf.contrib.learn.ModeKeys.TRAIN)
def get_valid():
return read_dataset('valid.csv', mode=tf.contrib.learn.ModeKeys.EVAL)
def my_serving_input_fn():
''' serving input function for saving the estimator'''
feature_spec = {TIMESERIES_COL: tf.FixedLenFeature(dtype=tf.float32, shape=[N_INPUTS])}
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_example_tensor')
receiver_tensors = {TIMESERIES_COL: serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
#return tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)()
def generate_nn():
model_params = {"l_rate": LEARNING_RATE}
nn = tf.estimator.Estimator(model_fn=simple_rnn, params=model_params, model_dir='./output_dir')
return nn
def save_nn(nn_estimator, output_dir):
nn_estimator.export_savedmodel(output_dir, my_serving_input_fn)
print('Successfully saved the estimator...')
def main():
# remove previous files
shutil.rmtree('output_dir', ignore_errors=True)
shutil.rmtree('test_dir', ignore_errors=True)
# generate data
to_csv('train.csv', 5000)
to_csv('test.csv', 1000)
# instantiate the nn estimator
nn = generate_nn()
# train nn
nn.train(get_train(), steps=2000)
# evaluate nn
ev = nn.evaluate(input_fn=get_valid())
print(ev)
# save nn for future use
save_nn(nn, './test_dir')
if __name__ == '__main__':
main()
这是我收到的错误:
File "/.../RNN-estimators-v3.py", line 172, in <module>
main()
File "/.../RNN-estimators-v3.py", line 167, in main
save_nn(nn, './test_dir')
File "/.../RNN-estimators-v3.py", line 142, in save_nn
nn_estimator.export_savedmodel(output_dir, my_serving_input_fn)
File "/.../anaconda/envs/TF-1-4-CPU/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 534, in export_savedmodel
serving_input_receiver.receiver_tensors_alternatives)
File "/.../anaconda/envs/TF-1-4-CPU/lib/python3.6/site-packages/tensorflow/python/estimator/export/export.py", line 195, in build_all_signature_defs
'{}'.format(type(export_outputs)))
ValueError: export_outputs must be a dict and not<class 'NoneType'>
非常感谢您的帮助。
最佳答案
当模式为 Predict 时,确保在您的 model_fn 函数中包含 export_outputs。
def simple_rnn(features, labels, mode, params):
# 0. Reformat input shape to become a sequence
x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
#print 'x={}'.format(x)
# 1. configure the RNN
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_SIZE, forget_bias=1.0)
outputs, _ = tf.nn.static_rnn(lstm_cell, x, dtype=tf.float32)
# slice to keep only the last cell of the RNN
outputs = outputs[-1]
#print 'last outputs={}'.format(outputs)
# output is result of linear activation of last layer of RNN
weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS]))
bias = tf.Variable(tf.random_normal([N_OUTPUTS]))
predictions = tf.matmul(outputs, weight) + bias
# 2. loss function, training/eval ops
if mode == tf.contrib.learn.ModeKeys.TRAIN or mode == tf.contrib.learn.ModeKeys.EVAL:
loss = tf.losses.mean_squared_error(labels, predictions)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=params["l_rate"])
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
eval_metric_ops = {"rmse": tf.metrics.root_mean_squared_error(labels, predictions)}
return tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
else:
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
export_outputs = {'predict_output': tf.estimator.export.PredictOutput({"pred_output_classes": predictions, 'probabilities': #your probabilities})}
predictions_dict = {"predicted": predictions}
# 4. return ModelFnOps
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions_dict,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops,export_outputs=export_outputs )
关于python - 在 TensorFlow 中保存自定义估算器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47856879/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!