gpt4 book ai didi

python - 如何使用 python opencv 裁剪图像中最大的对象?

转载 作者:太空宇宙 更新时间:2023-11-03 14:45:47 25 4
gpt4 key购买 nike

我想裁剪图像中最大的对象(字符)。此代码仅在没有行时才有效(如第一张图片所示)。但是我需要忽略这条线并制作第二张图片的图像。仅裁剪最大的对象图像。

import cv2
x1, y1, w1, h1 = (0,0,0,0)
points = 0

# load image
img = cv2.imread('Image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
# threshold to get just the signature
retval, thresh_gray = cv2.threshold(gray, thresh=100, maxval=255, type=cv2.THRESH_BINARY)

# find where the signature is and make a cropped region
points = np.argwhere(thresh_gray==0) # find where the black pixels are
points = np.fliplr(points) # store them in x,y coordinates instead of row,col indices
x, y, w, h = cv2.boundingRect(points) # create a rectangle around those points
crop = img[y:y+h, x:x+w]
cv2.imshow('save.jpg', crop)
cv2.waitkey(0)

输入Original Image

输出:Output Image

最佳答案

您可以使用函数 findContours 来执行此操作。

例如,像这样:

#!/usr/bin/env python

import cv2
import numpy as np

# load image
img = cv2.imread('Image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
# threshold to get just the signature (INVERTED)
retval, thresh_gray = cv2.threshold(gray, thresh=100, maxval=255, \
type=cv2.THRESH_BINARY_INV)

image, contours, hierarchy = cv2.findContours(thresh_gray,cv2.RETR_LIST, \
cv2.CHAIN_APPROX_SIMPLE)

# Find object with the biggest bounding box
mx = (0,0,0,0) # biggest bounding box so far
mx_area = 0
for cont in contours:
x,y,w,h = cv2.boundingRect(cont)
area = w*h
if area > mx_area:
mx = x,y,w,h
mx_area = area
x,y,w,h = mx

# Output to files
roi=img[y:y+h,x:x+w]
cv2.imwrite('Image_crop.jpg', roi)

cv2.rectangle(img,(x,y),(x+w,y+h),(200,0,0),2)
cv2.imwrite('Image_cont.jpg', img)

请注意,我使用的是 THRESH_BINARY_INV 而不是 THRESH_BINARY。

Image_cont.jpg:

Biggest contour: box around the sign

Image_crop.jpg:

Sign cropped


正如@Jello 指出的那样,您也可以将其与倾斜的矩形一起使用。与上面更简单的解决方案不同,这将正确过滤掉对角线。

例如:

#!/usr/bin/env python

import cv2
import numpy as np

# load image
img = cv2.imread('Image2.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
# threshold to get just the signature (INVERTED)
retval, thresh_gray = cv2.threshold(gray, 100, maxval=255, \
type=cv2.THRESH_BINARY_INV)

image, contours, hierarchy = cv2.findContours(thresh_gray,cv2.RETR_LIST, \
cv2.CHAIN_APPROX_SIMPLE)

def crop_minAreaRect(img, rect):
# Source: https://stackoverflow.com/questions/37177811/

# rotate img
angle = rect[2]
rows,cols = img.shape[0], img.shape[1]
matrix = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
img_rot = cv2.warpAffine(img,matrix,(cols,rows))

# rotate bounding box
rect0 = (rect[0], rect[1], 0.0)
box = cv2.boxPoints(rect)
pts = np.int0(cv2.transform(np.array([box]), matrix))[0]
pts[pts < 0] = 0

# crop and return
return img_rot[pts[1][1]:pts[0][1], pts[1][0]:pts[2][0]]

# Find object with the biggest bounding box
mx_rect = (0,0,0,0) # biggest skewed bounding box
mx_area = 0
for cont in contours:
arect = cv2.minAreaRect(cont)
area = arect[1][0]*arect[1][1]
if area > mx_area:
mx_rect, mx_area = arect, area

# Output to files
roi = crop_minAreaRect(img, mx_rect)
cv2.imwrite('Image_crop.jpg', roi)

box = cv2.boxPoints(mx_rect)
box = np.int0(box)
cv2.drawContours(img,[box],0,(200,0,0),2)
cv2.imwrite('Image_cont.jpg', img)

Image2.png(输入图像):

Signature with a diagonal long line

Image_cont.jpg:

Signature with a skewed bounding box

Image_crop.jpg:

Skewed signature after cropping


如果您使用 opencv-python 4.x,请将 image, contours, hierarchy 更改为 contours, hierarchy

关于python - 如何使用 python opencv 裁剪图像中最大的对象?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49577973/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com