- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 GaussianProcessRegressor
拟合 GP,我注意到我的超参数仍处于初始值。我在 gpr.py 中做了一些步骤,但无法查明具体原因。使用初始值进行预测会产生一条零线。
我的数据包含 5400 个样本,每个样本具有 12 个特征,映射到一个输出变量。尽管设计可能不是那么好,但我仍然希望能学到一些东西。
所需文件:
import pandas as pd
import numpy as np
import time
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel,WhiteKernel
designmatrix = pd.read_csv('features.txt', index_col = 0)
y = pd.read_csv('output.txt', header=None, index_col = 0)
# The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel.
# It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel)
# or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel).
#
# The ConstantKernel can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as
# part of a sum-kernel, where it modifies the mean of the Gaussian process.
#
# The main use-case of the White kernel is as part of a sum-kernel where it explains the noise-component of the signal.
# Tuning its parameter corresponds to estimating the noise-level: k(x_1, x_2) = noise_level if x_1 == x_2 else 0
kernel = ConstantKernel(0.1, (1e-23, 1e5)) *
RBF(0.1*np.ones(designmatrix.shape[1]), (1e-23, 1e10) ) + WhiteKernel(0.1, (1e-23, 1e5))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=0)
print('Training')
t = time.time()
gp = gp.fit(designmatrix, y)
elapsed = time.time() - t
print(elapsed)
score = gp.score(designmatrix, y)
print(score)
print("initial params")
params = gp.get_params()
print(params)
print("learned kernel params")
print(gp.kernel_.get_params())
结果如下:
initial params
{'alpha': 1e-10, 'copy_X_train': True, 'kernel__k1': 1**2, 'kernel__k2': RBF(len
gth_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), 'kernel__k1__constant_value': 1
.0, 'kernel__k1__constant_value_bounds': (1e-05, 100000.0), 'kernel__k2__length_
scale': array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]), 'ke
rnel__k2__length_scale_bounds': (1e-05, 100000.0), 'kernel': 1**2 * RBF(length_s
cale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), 'n_restarts_optimizer': 0, 'normaliz
e_y': False, 'optimizer': 'fmin_l_bfgs_b', 'random_state': None}
learned kernel params
{'k1': 1**2, 'k2': RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), 'k1__
constant_value': 1.0, 'k1__constant_value_bounds': (1e-05, 100000.0), 'k2__lengt
h_scale': array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]), '
k2__length_scale_bounds': (1e-05, 100000.0)}
所以,内核参数不变...
有没有办法检查警告?
我做错了什么,或者有什么我可以检查的吗?
任何帮助将不胜感激......
本
最佳答案
还没有答案(还)
开始记笔记
数据对于一个 SO 问题来说太大了,我们测试你的问题的时间也太长了。我已将您的代码更改为仅包含每个文件的前 600 行。您粘贴在此处的代码也无法运行,我已修复该问题。
尾注
使用 python 3.6.4
、scikit-learn==0.19.1
和 numpy==1.14.2
。
正如您在 n_restarts_optimizer
的文档中看到的,如果您想要优化内核超参数,您需要将其设置为大于 0。\
n_restarts_optimizer : int, optional (default: 0)
The number of restarts of the optimizer for finding the kernel's
parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel's initial parameters,
the remaining ones (if any) from thetas sampled log-uniform randomly
from the space of allowed theta-values. If greater than 0, all bounds
must be finite. Note that n_restarts_optimizer == 0 implies that one
run is performed.
因此,将代码中的值从 0
更改为 2
,会产生以下输出:
import pandas as pd
import numpy as np
import time
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel,WhiteKernel
designmatrix = pd.read_csv('features.txt', index_col = 0).iloc[0:600,]
y = pd.read_csv('output.txt', header=None, index_col = 0).iloc[0:600,]
# The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel.
# It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel)
# or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel).
#
# The ConstantKernel can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as
# part of a sum-kernel, where it modifies the mean of the Gaussian process.
#
# The main use-case of the White kernel is as part of a sum-kernel where it explains the noise-component of the signal.
# Tuning its parameter corresponds to estimating the noise-level: k(x_1, x_2) = noise_level if x_1 == x_2 else 0
kernel = ConstantKernel(0.1, (1e-23, 1e5)) * \
RBF(0.1*np.ones(designmatrix.shape[1]), (1e-23, 1e10) ) + \
WhiteKernel(0.1, (1e-23, 1e5))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=2)
print("initial params")
params = gp.get_params()
print(params)
print('Training')
t = time.time()
gp = gp.fit(designmatrix, y)
elapsed = time.time() - t
print(elapsed)
score = gp.score(designmatrix, y)
print(score)
print("learned kernel params")
print(gp.kernel_.get_params())
输出:
initial params
{'alpha': 1e-10, 'copy_X_train': True, 'kernel__k1': 0.316**2 * RBF(length_scale=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), 'kernel__k2': WhiteKernel(noise_level=0.1), 'kernel__k1__k1': 0.316**2, 'kernel__k1__k2': RBF(length_scale=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), 'kernel__k1__k1__constant_value': 0.1, 'kernel__k1__k1__constant_value_bounds': (1e-23, 100000.0), 'kernel__k1__k2__length_scale': array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), 'kernel__k1__k2__length_scale_bounds': (1e-23, 10000000000.0), 'kernel__k2__noise_level': 0.1, 'kernel__k2__noise_level_bounds': (1e-23, 100000.0), 'kernel': 0.316**2 * RBF(length_scale=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) + WhiteKernel(noise_level=0.1), 'n_restarts_optimizer': 2, 'normalize_y': False, 'optimizer': 'fmin_l_bfgs_b', 'random_state': None}
Training
3.9108407497406006
1.0
learned kernel params
{'k1': 20.3**2 * RBF(length_scale=[0.00289, 9.29e-15, 8.81e-20, 0.00165, 2.7e+08, 3.2e+06, 0.233, 5.62e+07, 8.78e+07, 0.0169, 4.88e-21, 3.23e-20]), 'k2': WhiteKernel(noise_level=2.17e-13), 'k1__k1': 20.3**2, 'k1__k2': RBF(length_scale=[0.00289, 9.29e-15, 8.81e-20, 0.00165, 2.7e+08, 3.2e+06, 0.233, 5.62e+07, 8.78e+07, 0.0169, 4.88e-21, 3.23e-20]), 'k1__k1__constant_value': 411.28699807005, 'k1__k1__constant_value_bounds': (1e-23, 100000.0), 'k1__k2__length_scale': array([2.88935323e-03, 9.29401433e-15, 8.81112330e-20, 1.64832813e-03,
2.70454686e+08, 3.20194179e+06, 2.32646715e-01, 5.62487948e+07,
8.77636837e+07, 1.68642019e-02, 4.88384874e-21, 3.22536538e-20]), 'k1__k2__length_scale_bounds': (1e-23, 10000000000.0), 'k2__noise_level': 2.171274720012903e-13, 'k2__noise_level_bounds': (1e-23, 100000.0)}
能否请您编辑您的问题,以便可以重现您的观察结果?
关于python - SK学习: Gaussian Process Regression not changed during learning,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49688564/
基本上,我的问题是,由于无监督学习是机器学习的一种,是否需要机器“学习”的某些方面并根据其发现进行改进?例如,如果开发了一种算法来获取未标记的图像并找到它们之间的关联,那么它是否需要根据这些关联来改进
生成模型和判别模型似乎可以学习条件 P(x|y) 和联合 P(x,y) 概率分布。但从根本上讲,我无法说服自己“学习概率分布”意味着什么。 最佳答案 这意味着您的模型要么充当训练样本的分布估计器,要么
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
是否Scikit-learn支持迁移学习?请检查以下代码。 型号 clf由 fit(X,y) 获取 jar 头型号clf2在clf的基础上学习和转移学习 fit(X2,y2) ? >>> from s
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在使用基于 rlglue 的 python-rl q 学习框架。 我的理解是,随着情节的发展,算法会收敛到一个最优策略(这是一个映射,说明在什么状态下采取什么行动)。 问题 1:这是否意味着经过若
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我正在尝试离散数据以进行分类。它们的值是字符串,我将它们转换为数字 0,1,2,3。 这就是数据的样子(pandas 数据框)。我已将数据帧拆分为 dataLabel 和 dataFeatures L
每当我开始拥有更多的类(1000 或更多)时,MultinominalNB 就会变得非常慢并且需要 GB 的 RAM。对于所有支持 .partial_fit()(SGDClassifier、Perce
我需要使用感知器算法来研究一些非线性可分数据集的学习率和渐近误差。 为了做到这一点,我需要了解构造函数的一些参数。我花了很多时间在谷歌上搜索它们,但我仍然不太明白它们的作用或如何使用它们。 给我带来更
我知道作为功能 ordinal data could be assigned arbitrary numbers and OneHotEncoding could be done for catego
这是一个示例,其中有逐步的过程使系统学习并对输入数据进行分类。 它对给定的 5 个数据集域进行了正确分类。此外,它还对停用词进行分类。 例如 输入:docs_new = ['上帝就是爱', '什么在哪
我有一个 scikit-learn 模型,它简化了一点,如下所示: clf1 = RandomForestClassifier() clf1.fit(data_training, non_binary
我是一名优秀的程序员,十分优秀!