gpt4 book ai didi

python - Pandas to_datetime() 没有检测到列

转载 作者:太空宇宙 更新时间:2023-11-03 14:44:36 31 4
gpt4 key购买 nike

我有三列(h1、h2、h3)分别代表日、月和年,例如

import pandas as pd

df = pd.DataFrame({
'h1': [1,2,3],
'h2': [1,2,3],
'h3': [2000,2001,2002]
})

当我执行时:

pd.to_datetime(df[['h1', 'h2', 'h3']])

此结果导致错误:ValueError: to assemble mappings requires at least that [year, month, day] be specified: [day,month,year] is missing 但是当我重命名列时然后执行 pd.to_datetime 例如

df=df.rename(columns ={'h1':'day', 'h2':'month', 'h3': 'year'})
df["date_col"] =pd.to_datetime(df[['day','month','year']])

在上面我得到了年份列,我们必须这样做吗?或者是否可以提供一种格式,以便可以将列分别检测为日、月、年?谢谢。

最佳答案

总结:

正如文档所说,您重命名列的方法已经很聪明了:

Examples

Assembling a datetime from multiple columns of a DataFrame. The keyscan be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’,‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same

但是还有一些选择。根据我的经验,使用 zip 的列表理解非常快(对于小集合)。对于大约 3000 行数据,重命名列变得最快。查看图表,重命名的惩罚对于小集合来说很难,但可以补偿大集合。

备选方案

pd.to_datetime(['-'.join(map(str,i)) for i in zip(df['h3'],df['h2'],df['h1'])])
pd.to_datetime(['-'.join(i) for i in df[['h3', 'h2', 'h1']].values.astype(str)])
df[['h3','h2','h1']].astype(str).apply(lambda x: pd.to_datetime('-'.join(x)), 1)
pd.to_datetime(df[['h1','h2','h3']].rename(columns={'h1':'day', 'h2':'month','h3':'year'}))

计时 Win10:

#df = pd.concat([df]*1000)
2.74 ms ± 33.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
8.08 ms ± 158 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
158 ms ± 472 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
2.64 ms ± 104 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

计时 MacBook Air:

100 loops, best of 3: 6.1 ms per loop
100 loops, best of 3: 12.7 ms per loop
1 loop, best of 3: 335 ms per loop
100 loops, best of 3: 4.7 ms per loop

更新我写的代码(如果您有改进建议或任何可以提供帮助的库,我很高兴):

import pandas as pd
import numpy as np
import timeit
import matplotlib.pyplot as plt
from collections import defaultdict

df = pd.DataFrame({
'h1': np.arange(1,11),
'h2': np.arange(1,11),
'h3': np.arange(2000,2010)
})

myfuncs = {
"pd.to_datetime(['-'.join(map(str,i)) for i in zip(df['h3'],df['h2'],df['h1'])])":
lambda: pd.to_datetime(['-'.join(map(str,i)) for i in zip(df['h3'],df['h2'],df['h1'])]),
"pd.to_datetime(['-'.join(i) for i in df[['h3','h2', 'h1']].values.astype(str)])":
lambda: pd.to_datetime(['-'.join(i) for i in df[['h3','h2', 'h1']].values.astype(str)]),
"pd.to_datetime(df[['h1','h2','h3']].rename(columns={'h1':'day','h2':'month','h3':'year'}))":
lambda: pd.to_datetime(df[['h1','h2','h3']].rename(columns={'h1':'day','h2':'month','h3':'year'}))
}

d = defaultdict(dict)
step = 10
cont = True
while cont:
lendf = len(df); print(lendf)
for k,v in mycodes.items():
iters = 1
t = 0
while t < 0.2:
ts = timeit.repeat(v, number=iters, repeat=3)
t = min(ts)
iters *= 10
d[k][lendf] = t/iters
if t > 2: cont = False
df = pd.concat([df]*step)

pd.DataFrame(d).plot().legend(loc='upper center', bbox_to_anchor=(0.5, -0.15))
plt.yscale('log'); plt.xscale('log'); plt.ylabel('seconds'); plt.xlabel('df rows')
plt.show()

返回:

enter image description here

关于python - Pandas to_datetime() 没有检测到列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50654881/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com