- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个包含很多列的 pandas 数据框,其中一些列在周末有值。
我现在正尝试删除所有周末行,但需要将我删除的值添加到相应的下周一。
Thu: 4
Fri: 5
Sat: 2
Sun: 1
Mon: 4
Tue: 3
需要成为
Thu: 4
Fri: 5
Mon: 7
Tue: 3
我已经想出如何只对工作日进行切片(使用 df.index.dayofweek),但在这样做之前想不出一个聪明的聚合方法。
下面是一些虚拟代码:
index = pd.date_range(datetime.datetime.now().date() -
datetime.timedelta(20),
periods = 20,
freq = 'D')
df = pd.DataFrame({
'Val_1': np.random.rand(20),
'Val_2': np.random.rand(20),
'Val_3': np.random.rand(20)
},
index = index)
df['Weekday'] = df.index.dayofweek
如有任何帮助,我们将不胜感激!
最佳答案
我包含了一个随机种子
np.random.seed([3, 1415])
index = pd.date_range(datetime.datetime.now().date() -
datetime.timedelta(20),
periods = 20,
freq = 'D')
df = pd.DataFrame({
'Val_1': np.random.rand(20),
'Val_2': np.random.rand(20),
'Val_3': np.random.rand(20)
},
index = index)
df['day_name'] = df.index.day_name()
df.head(6)
Val_1 Val_2 Val_3 day_name
2018-07-18 0.444939 0.278735 0.651676 Wednesday
2018-07-19 0.407554 0.609862 0.136097 Thursday
2018-07-20 0.460148 0.085823 0.544838 Friday
2018-07-21 0.465239 0.836997 0.035073 Saturday
2018-07-22 0.462691 0.739635 0.275079 Sunday
2018-07-23 0.016545 0.866059 0.706685 Monday
我为周六和周日填写一系列日期,随后是周一。这通过操作在组中使用。
weekdays = df.index.to_series().mask(df.index.dayofweek >= 5).bfill()
d_ = df.groupby(weekdays).sum()
d_
Val_1 Val_2 Val_3
2018-07-18 0.444939 0.278735 0.651676
2018-07-19 0.407554 0.609862 0.136097
2018-07-20 0.460148 0.085823 0.544838
2018-07-23 0.944475 2.442691 1.016837
2018-07-24 0.850445 0.691271 0.713614
2018-07-25 0.817744 0.377185 0.776050
2018-07-26 0.777962 0.225146 0.542329
2018-07-27 0.757983 0.435280 0.836541
2018-07-30 2.645824 2.198333 1.375860
2018-07-31 0.926879 0.018688 0.746060
2018-08-01 0.721535 0.700566 0.373741
2018-08-02 0.117642 0.900749 0.603536
2018-08-03 0.145906 0.764869 0.775801
2018-08-06 0.738110 1.580137 1.266593
df.join(d_, rsuffix='_')
Val_1 Val_2 Val_3 day_name Val_1_ Val_2_ Val_3_
2018-07-18 0.444939 0.278735 0.651676 Wednesday 0.444939 0.278735 0.651676
2018-07-19 0.407554 0.609862 0.136097 Thursday 0.407554 0.609862 0.136097
2018-07-20 0.460148 0.085823 0.544838 Friday 0.460148 0.085823 0.544838
2018-07-21 0.465239 0.836997 0.035073 Saturday NaN NaN NaN
2018-07-22 0.462691 0.739635 0.275079 Sunday NaN NaN NaN
2018-07-23 0.016545 0.866059 0.706685 Monday 0.944475 2.442691 1.016837
2018-07-24 0.850445 0.691271 0.713614 Tuesday 0.850445 0.691271 0.713614
2018-07-25 0.817744 0.377185 0.776050 Wednesday 0.817744 0.377185 0.776050
2018-07-26 0.777962 0.225146 0.542329 Thursday 0.777962 0.225146 0.542329
2018-07-27 0.757983 0.435280 0.836541 Friday 0.757983 0.435280 0.836541
2018-07-28 0.934829 0.700900 0.538186 Saturday NaN NaN NaN
2018-07-29 0.831104 0.700946 0.185523 Sunday NaN NaN NaN
2018-07-30 0.879891 0.796487 0.652151 Monday 2.645824 2.198333 1.375860
2018-07-31 0.926879 0.018688 0.746060 Tuesday 0.926879 0.018688 0.746060
2018-08-01 0.721535 0.700566 0.373741 Wednesday 0.721535 0.700566 0.373741
2018-08-02 0.117642 0.900749 0.603536 Thursday 0.117642 0.900749 0.603536
2018-08-03 0.145906 0.764869 0.775801 Friday 0.145906 0.764869 0.775801
2018-08-04 0.199844 0.253200 0.091238 Saturday NaN NaN NaN
2018-08-05 0.437564 0.548054 0.504035 Sunday NaN NaN NaN
2018-08-06 0.100702 0.778883 0.671320 Monday 0.738110 1.580137 1.266593
关于python - 将 pandas 数据框中的一些行添加到下一个,然后删除它们,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51732396/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!