- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个受 CPU 限制的单线程 Python 3 程序,唯一的 IO 是打印几行输出(不读取/写入文件)。
在我的台式机(AMD Ryzen 1700x 3.8 GHz、16GB 3000 MHz DDR4)上,它(始终)以 3400 集/秒的速度运行,运行大约需要 60 秒。
在我的笔记本电脑(Intel i7-6600U 2.8 GHz、16GB 2000 MHz DDR3)上,性能翻倍,每秒 7000 集,运行时间不到 30 秒。
两台机器都运行相同的操作系统(Fedora 26)和相同的 python 版本(不是从源代码构建)。
此外,在分析时,有一行显示
10.999 tottime, 28.814 cumtime for arrayprint.py:557(fillFormat)
但仅当代码在桌面上运行时。在笔记本电脑上,特定函数根本不会出现(并且 arrayprint
函数的总时间都不超过 1 秒)。
奇怪的是,不仅机器之间的性能不同,而且在程序执行期间没有将数组或列表打印到屏幕上、转换为字符串或保存到文件中。
以下是桌面版的完整配置文件:
54499635 function calls (53787999 primitive calls) in 58.746 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
533727 0.359 0.000 0.514 0.000 <frozen importlib._bootstrap>:402(parent)
533727 0.469 0.000 0.697 0.000 <frozen importlib._bootstrap>:989(_handle_fromlist)
1 0.000 0.000 58.746 58.746 <string>:1(<module>)
4 0.000 0.000 0.000 0.000 __init__.py:120(getLevelName)
567524 0.237 0.000 0.727 0.000 __init__.py:1284(debug)
2 0.000 0.000 0.000 0.000 __init__.py:1296(info)
2 0.000 0.000 0.000 0.000 __init__.py:1308(warning)
2 0.000 0.000 0.000 0.000 __init__.py:1320(warn)
4 0.000 0.000 0.000 0.000 __init__.py:1374(findCaller)
4 0.000 0.000 0.000 0.000 __init__.py:1404(makeRecord)
4 0.000 0.000 0.000 0.000 __init__.py:1419(_log)
4 0.000 0.000 0.000 0.000 __init__.py:1444(handle)
4 0.000 0.000 0.000 0.000 __init__.py:1498(callHandlers)
567528 0.175 0.000 0.175 0.000 __init__.py:1528(getEffectiveLevel)
567528 0.315 0.000 0.490 0.000 __init__.py:1542(isEnabledFor)
4 0.000 0.000 0.000 0.000 __init__.py:157(<lambda>)
4 0.000 0.000 0.000 0.000 __init__.py:251(__init__)
4 0.000 0.000 0.000 0.000 __init__.py:329(getMessage)
4 0.000 0.000 0.000 0.000 __init__.py:387(usesTime)
4 0.000 0.000 0.000 0.000 __init__.py:390(format)
4 0.000 0.000 0.000 0.000 __init__.py:540(usesTime)
4 0.000 0.000 0.000 0.000 __init__.py:546(formatMessage)
4 0.000 0.000 0.000 0.000 __init__.py:562(format)
8 0.000 0.000 0.000 0.000 __init__.py:703(filter)
8 0.000 0.000 0.000 0.000 __init__.py:807(acquire)
8 0.000 0.000 0.000 0.000 __init__.py:814(release)
4 0.000 0.000 0.000 0.000 __init__.py:827(format)
4 0.000 0.000 0.000 0.000 __init__.py:850(handle)
4 0.000 0.000 0.000 0.000 __init__.py:969(flush)
4 0.000 0.000 0.000 0.000 __init__.py:980(emit)
289159 0.101 0.000 1.491 0.000 _methods.py:31(_sum)
533727 0.175 0.000 1.613 0.000 _methods.py:37(_any)
177909 0.862 0.000 33.737 0.000 arrayprint.py:237(_get_formatdict)
177909 0.370 0.000 34.214 0.000 arrayprint.py:273(_get_format_function)
177909 0.686 0.000 39.971 0.000 arrayprint.py:315(_array2string)
533727/177909 0.674 0.000 40.351 0.000 arrayprint.py:340(array2string)
1224652 0.960 0.000 1.554 0.000 arrayprint.py:467(_extendLine)
177909 1.671 0.000 4.320 0.000 arrayprint.py:475(_formatArray)
533727 0.682 0.000 29.496 0.000 arrayprint.py:543(__init__)
533727 10.999 0.000 28.814 0.000 arrayprint.py:557(fillFormat)
355336 1.600 0.000 5.432 0.000 arrayprint.py:589(<listcomp>)
2416068 2.677 0.000 3.832 0.000 arrayprint.py:642(_digits)
177909 0.720 0.000 2.378 0.000 arrayprint.py:652(__init__)
1224652 1.057 0.000 1.057 0.000 arrayprint.py:665(__call__)
533727 0.147 0.000 0.147 0.000 arrayprint.py:674(__init__)
177909 0.227 0.000 0.319 0.000 arrayprint.py:702(__init__)
177909 0.415 0.000 17.986 0.000 arrayprint.py:713(__init__)
177909 0.166 0.000 0.166 0.000 arrayprint.py:730(__init__)
177909 0.046 0.000 0.046 0.000 arrayprint.py:751(__init__)
1 0.000 0.000 0.000 0.000 enum.py:265(__call__)
1 0.000 0.000 0.000 0.000 enum.py:515(__new__)
1 0.000 0.000 0.000 0.000 enum.py:544(_missing_)
177909 0.206 0.000 0.206 0.000 enum.py:552(__str__)
177909 0.269 0.000 0.475 0.000 enum.py:564(__format__)
755408 0.248 0.000 0.366 0.000 enum.py:579(__hash__)
200000 0.037 0.000 0.037 0.000 enum.py:592(name)
27976 0.005 0.000 0.005 0.000 enum.py:597(value)
200524 0.443 0.000 0.641 0.000 eventgen.py:115(_push)
200001 0.492 0.000 0.885 0.000 eventgen.py:122(pop)
200000 0.892 0.000 1.036 0.000 eventgen.py:137(ce_str)
13988 0.017 0.000 0.034 0.000 eventgen.py:15(__lt__)
99676 0.168 0.000 0.911 0.000 eventgen.py:44(event_new)
79335 0.096 0.000 0.520 0.000 eventgen.py:52(event_end)
11689 0.078 0.000 0.261 0.000 eventgen.py:61(event_new_handoff)
9824 0.014 0.000 0.098 0.000 eventgen.py:90(event_end_handoff)
77441 0.295 0.000 0.380 0.000 eventgen.py:94(reassign)
177909 0.177 0.000 0.555 0.000 fromnumeric.py:1364(ravel)
200001 0.093 0.000 0.464 0.000 fromnumeric.py:1471(nonzero)
289159 0.542 0.000 2.148 0.000 fromnumeric.py:1710(sum)
533727 0.637 0.000 2.956 0.000 fromnumeric.py:1866(any)
200001 0.120 0.000 0.372 0.000 fromnumeric.py:55(_wrapfunc)
4 0.000 0.000 0.000 0.000 genericpath.py:117(_splitext)
49 0.000 0.000 0.001 0.000 grid.py:172(neighbors1)
49 0.001 0.000 0.001 0.000 grid.py:195(neighbors2)
533727/177909 0.311 0.000 40.472 0.000 numeric.py:1927(array_str)
1067454 1.724 0.000 4.091 0.000 numeric.py:2692(seterr)
1067454 1.466 0.000 1.603 0.000 numeric.py:2792(geterr)
533727 0.299 0.000 0.422 0.000 numeric.py:3085(__init__)
533727 0.411 0.000 2.588 0.000 numeric.py:3089(__enter__)
533727 0.461 0.000 2.374 0.000 numeric.py:3094(__exit__)
177909 0.064 0.000 0.151 0.000 numeric.py:463(asarray)
711636 0.223 0.000 0.503 0.000 numeric.py:534(asanyarray)
4 0.000 0.000 0.000 0.000 posixpath.py:119(splitext)
4 0.000 0.000 0.000 0.000 posixpath.py:142(basename)
4 0.000 0.000 0.000 0.000 posixpath.py:39(_get_sep)
6 0.000 0.000 0.000 0.000 posixpath.py:50(normcase)
4 0.000 0.000 0.000 0.000 process.py:137(name)
4 0.000 0.000 0.000 0.000 process.py:35(current_process)
1 0.000 0.000 0.000 0.000 signal.py:25(_int_to_enum)
2 0.000 0.000 0.000 0.000 signal.py:35(_enum_to_int)
1 0.000 0.000 0.000 0.000 signal.py:45(signal)
99627 0.062 0.000 0.062 0.000 stats.py:38(new)
20292 0.028 0.000 0.039 0.000 stats.py:42(new_rej)
88750 0.047 0.000 0.047 0.000 stats.py:48(end)
11623 0.005 0.000 0.005 0.000 stats.py:51(hoff_new)
1799 0.001 0.000 0.002 0.000 stats.py:54(hoff_rej)
22091 0.012 0.000 0.012 0.000 stats.py:58(rej)
200000 0.234 0.000 1.513 0.000 stats.py:64(iter)
1 0.000 0.000 0.000 0.000 stats.py:69(n_iter)
1 0.000 0.000 0.000 0.000 stats.py:86(endsim)
1 0.000 0.000 0.001 0.001 strats.py:189(get_init_action)
200000 1.070 0.000 49.964 0.000 strats.py:193(get_action)
177909 1.348 0.000 1.937 0.000 strats.py:220(execute_action)
200001 4.572 0.000 47.626 0.000 strats.py:243(optimal_ch)
89158 0.071 0.000 0.958 0.000 strats.py:299(reward)
89158 0.018 0.000 0.018 0.000 strats.py:308(discount)
1242355 0.944 0.000 0.944 0.000 strats.py:333(get_qval)
89158 0.160 0.000 0.160 0.000 strats.py:336(update_qval)
1 0.000 0.000 58.746 58.746 strats.py:40(init_sim)
1 1.271 1.271 58.745 58.745 strats.py:49(_simulate)
4 0.000 0.000 0.000 0.000 threading.py:1076(name)
4 0.000 0.000 0.000 0.000 threading.py:1230(current_thread)
227976 0.120 0.000 0.162 0.000 types.py:135(__get__)
177909 0.079 0.000 0.079 0.000 {built-in method _functools.reduce}
200001 0.192 0.000 0.222 0.000 {built-in method _heapq.heappop}
200524 0.084 0.000 0.088 0.000 {built-in method _heapq.heappush}
310143 0.064 0.000 0.064 0.000 {built-in method _operator.gt}
843054 0.152 0.000 0.152 0.000 {built-in method _operator.lt}
1 0.000 0.000 0.000 0.000 {built-in method _signal.signal}
8 0.000 0.000 0.000 0.000 {built-in method _thread.get_ident}
2 0.000 0.000 0.000 0.000 {built-in method _warnings.warn}
1 0.000 0.000 58.746 58.746 {built-in method builtins.exec}
200001 0.056 0.000 0.056 0.000 {built-in method builtins.getattr}
1067468 0.228 0.000 0.228 0.000 {built-in method builtins.hasattr}
755408 0.118 0.000 0.118 0.000 {built-in method builtins.hash}
467082 0.164 0.000 0.164 0.000 {built-in method builtins.isinstance}
533727 0.107 0.000 0.107 0.000 {built-in method builtins.issubclass}
10361766 1.076 0.000 1.076 0.000 {built-in method builtins.len}
533441 0.304 0.000 0.304 0.000 {built-in method builtins.max}
533923 0.198 0.000 0.198 0.000 {built-in method builtins.min}
889545 0.368 0.000 0.368 0.000 {built-in method numpy.core.multiarray.array}
111251 0.101 0.000 0.101 0.000 {built-in method numpy.core.multiarray.where}
2134908 0.377 0.000 0.377 0.000 {built-in method numpy.core.umath.geterrobj}
1067454 0.524 0.000 0.524 0.000 {built-in method numpy.core.umath.seterrobj}
14 0.000 0.000 0.000 0.000 {built-in method posix.fspath}
4 0.000 0.000 0.000 0.000 {built-in method posix.getpid}
4 0.000 0.000 0.000 0.000 {built-in method sys._getframe}
5 0.000 0.000 0.000 0.000 {built-in method time.time}
8 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects}
533727 0.299 0.000 1.912 0.000 {method 'any' of 'numpy.ndarray' objects}
875 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
16544 0.119 0.000 0.119 0.000 {method 'choice' of 'mtrand.RandomState' objects}
533727 0.872 0.000 0.872 0.000 {method 'compress' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
188835 0.641 0.000 0.641 0.000 {method 'exponential' of 'mtrand.RandomState' objects}
4 0.000 0.000 0.000 0.000 {method 'find' of 'str' objects}
4 0.000 0.000 0.000 0.000 {method 'flush' of '_io.TextIOWrapper' objects}
8 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
355818 0.069 0.000 0.069 0.000 {method 'item' of 'numpy.ndarray' objects}
200001 0.196 0.000 0.196 0.000 {method 'nonzero' of 'numpy.ndarray' objects}
533727 0.123 0.000 0.123 0.000 {method 'pop' of 'dict' objects}
11689 0.053 0.000 0.053 0.000 {method 'randint' of 'mtrand.RandomState' objects}
168494 0.128 0.000 0.128 0.000 {method 'random_sample' of 'mtrand.RandomState' objects}
177909 0.232 0.000 0.232 0.000 {method 'ravel' of 'numpy.ndarray' objects}
1889376 5.023 0.000 5.023 0.000 {method 'reduce' of 'numpy.ufunc' objects}
8 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects}
12 0.000 0.000 0.000 0.000 {method 'rfind' of 'str' objects}
533727 0.155 0.000 0.155 0.000 {method 'rpartition' of 'str' objects}
4865786 1.100 0.000 1.100 0.000 {method 'rstrip' of 'str' objects}
8 0.000 0.000 0.000 0.000 {method 'write' of '_io.TextIOWrapper' objects}
这是笔记本电脑的:
27738517 function calls (26673571 primitive calls) in 28.612 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 28.612 28.612 <string>:1(<module>)
4 0.000 0.000 0.000 0.000 __init__.py:120(getLevelName)
566894 0.244 0.000 0.720 0.000 __init__.py:1284(debug)
2 0.000 0.000 0.000 0.000 __init__.py:1296(info)
2 0.000 0.000 0.000 0.000 __init__.py:1308(warning)
2 0.000 0.000 0.000 0.000 __init__.py:1320(warn)
4 0.000 0.000 0.000 0.000 __init__.py:1374(findCaller)
4 0.000 0.000 0.000 0.000 __init__.py:1404(makeRecord)
4 0.000 0.000 0.000 0.000 __init__.py:1419(_log)
4 0.000 0.000 0.000 0.000 __init__.py:1444(handle)
4 0.000 0.000 0.000 0.000 __init__.py:1498(callHandlers)
566898 0.166 0.000 0.166 0.000 __init__.py:1528(getEffectiveLevel)
566898 0.309 0.000 0.476 0.000 __init__.py:1542(isEnabledFor)
4 0.000 0.000 0.000 0.000 __init__.py:157(<lambda>)
4 0.000 0.000 0.000 0.000 __init__.py:251(__init__)
4 0.000 0.000 0.000 0.000 __init__.py:329(getMessage)
4 0.000 0.000 0.000 0.000 __init__.py:387(usesTime)
4 0.000 0.000 0.000 0.000 __init__.py:390(format)
4 0.000 0.000 0.000 0.000 __init__.py:540(usesTime)
4 0.000 0.000 0.000 0.000 __init__.py:546(formatMessage)
4 0.000 0.000 0.000 0.000 __init__.py:562(format)
8 0.000 0.000 0.000 0.000 __init__.py:703(filter)
8 0.000 0.000 0.000 0.000 __init__.py:807(acquire)
8 0.000 0.000 0.000 0.000 __init__.py:814(release)
4 0.000 0.000 0.000 0.000 __init__.py:827(format)
4 0.000 0.000 0.000 0.000 __init__.py:850(handle)
4 0.000 0.000 0.000 0.000 __init__.py:969(flush)
4 0.000 0.000 0.000 0.000 __init__.py:980(emit)
288946 0.112 0.000 1.643 0.000 _methods.py:31(_sum)
177491 0.330 0.000 0.330 0.000 arrayprint.py:256(_get_formatdict)
177491 0.169 0.000 3.542 0.000 arrayprint.py:259(<lambda>)
177491 0.465 0.000 4.419 0.000 arrayprint.py:299(_get_format_function)
177491 0.623 0.000 9.729 0.000 arrayprint.py:343(_array2string)
532473/177491 0.987 0.000 10.679 0.000 arrayprint.py:381(wrapper)
532473/177491 0.721 0.000 10.150 0.000 arrayprint.py:399(array2string)
1225350 0.971 0.000 1.470 0.000 arrayprint.py:527(_extendLine)
177491 1.458 0.000 3.920 0.000 arrayprint.py:535(_formatArray)
177491 0.768 0.000 3.373 0.000 arrayprint.py:712(__init__)
1225350 0.960 0.000 0.960 0.000 arrayprint.py:725(__call__)
1 0.000 0.000 0.000 0.000 enum.py:265(__call__)
1 0.000 0.000 0.000 0.000 enum.py:515(__new__)
1 0.000 0.000 0.000 0.000 enum.py:544(_missing_)
177491 0.209 0.000 0.209 0.000 enum.py:552(__str__)
177491 0.316 0.000 0.525 0.000 enum.py:564(__format__)
755255 0.238 0.000 0.352 0.000 enum.py:579(__hash__)
200000 0.039 0.000 0.039 0.000 enum.py:592(name)
28626 0.005 0.000 0.005 0.000 enum.py:597(value)
200505 0.443 0.000 0.643 0.000 eventgen.py:115(_push)
200001 0.474 0.000 0.863 0.000 eventgen.py:122(pop)
200000 0.834 0.000 0.983 0.000 eventgen.py:137(ce_str)
14313 0.017 0.000 0.035 0.000 eventgen.py:15(__lt__)
99673 0.186 0.000 0.939 0.000 eventgen.py:44(event_new)
78949 0.094 0.000 0.500 0.000 eventgen.py:52(event_end)
11887 0.078 0.000 0.261 0.000 eventgen.py:61(event_new_handoff)
9996 0.017 0.000 0.103 0.000 eventgen.py:90(event_end_handoff)
77374 0.284 0.000 0.364 0.000 eventgen.py:94(reassign)
177491 0.195 0.000 0.595 0.000 fromnumeric.py:1380(ravel)
200001 0.098 0.000 0.490 0.000 fromnumeric.py:1487(nonzero)
288946 0.590 0.000 2.352 0.000 fromnumeric.py:1730(sum)
200001 0.130 0.000 0.392 0.000 fromnumeric.py:55(_wrapfunc)
4 0.000 0.000 0.000 0.000 genericpath.py:117(_splitext)
49 0.000 0.000 0.001 0.000 grid.py:172(neighbors1)
49 0.001 0.000 0.001 0.000 grid.py:195(neighbors2)
532473/177491 0.365 0.000 10.826 0.000 numeric.py:1905(array_str)
177491 0.062 0.000 0.151 0.000 numeric.py:463(asarray)
177491 0.051 0.000 0.104 0.000 numeric.py:534(asanyarray)
4 0.000 0.000 0.000 0.000 posixpath.py:119(splitext)
4 0.000 0.000 0.000 0.000 posixpath.py:142(basename)
4 0.000 0.000 0.000 0.000 posixpath.py:39(_get_sep)
6 0.000 0.000 0.000 0.000 posixpath.py:50(normcase)
4 0.000 0.000 0.000 0.000 process.py:137(name)
4 0.000 0.000 0.000 0.000 process.py:35(current_process)
1 0.000 0.000 0.000 0.000 signal.py:25(_int_to_enum)
2 0.000 0.000 0.000 0.000 signal.py:35(_enum_to_int)
1 0.000 0.000 0.000 0.000 signal.py:45(signal)
99624 0.066 0.000 0.066 0.000 stats.py:38(new)
20675 0.028 0.000 0.040 0.000 stats.py:42(new_rej)
88545 0.045 0.000 0.045 0.000 stats.py:48(end)
11831 0.006 0.000 0.006 0.000 stats.py:51(hoff_new)
1835 0.001 0.000 0.002 0.000 stats.py:54(hoff_rej)
22510 0.013 0.000 0.013 0.000 stats.py:58(rej)
200000 0.261 0.000 1.490 0.000 stats.py:64(iter)
1 0.000 0.000 0.000 0.000 stats.py:69(n_iter)
1 0.000 0.000 0.000 0.000 stats.py:86(endsim)
1 0.000 0.000 0.000 0.000 strats.py:189(get_init_action)
200000 1.234 0.000 19.760 0.000 strats.py:193(get_action)
177490 1.294 0.000 1.860 0.000 strats.py:220(execute_action)
200001 3.897 0.000 17.128 0.000 strats.py:243(optimal_ch)
88945 0.074 0.000 1.112 0.000 strats.py:299(reward)
88945 0.017 0.000 0.017 0.000 strats.py:308(discount)
1241938 0.681 0.000 0.681 0.000 strats.py:333(get_qval)
88945 0.167 0.000 0.167 0.000 strats.py:336(update_qval)
1 0.000 0.000 28.612 28.612 strats.py:40(init_sim)
1 1.383 1.383 28.611 28.611 strats.py:49(_simulate)
4 0.000 0.000 0.000 0.000 threading.py:1076(name)
4 0.000 0.000 0.000 0.000 threading.py:1230(current_thread)
228626 0.122 0.000 0.166 0.000 types.py:135(__get__)
177491 0.075 0.000 0.075 0.000 {built-in method _functools.reduce}
200001 0.203 0.000 0.234 0.000 {built-in method _heapq.heappop}
200505 0.079 0.000 0.083 0.000 {built-in method _heapq.heappush}
320262 0.068 0.000 0.068 0.000 {built-in method _operator.gt}
832731 0.136 0.000 0.136 0.000 {built-in method _operator.lt}
1 0.000 0.000 0.000 0.000 {built-in method _signal.signal}
532481 0.090 0.000 0.090 0.000 {built-in method _thread.get_ident}
2 0.000 0.000 0.000 0.000 {built-in method _warnings.warn}
1 0.000 0.000 28.612 28.612 {built-in method builtins.exec}
200001 0.066 0.000 0.066 0.000 {built-in method builtins.getattr}
14 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
755255 0.113 0.000 0.113 0.000 {built-in method builtins.hash}
532473 0.092 0.000 0.092 0.000 {built-in method builtins.id}
466451 0.166 0.000 0.166 0.000 {built-in method builtins.isinstance}
532473 0.083 0.000 0.083 0.000 {built-in method builtins.issubclass}
3750044 0.325 0.000 0.325 0.000 {built-in method builtins.len}
177687 0.091 0.000 0.091 0.000 {built-in method builtins.max}
196 0.000 0.000 0.000 0.000 {built-in method builtins.min}
354982 0.142 0.000 0.142 0.000 {built-in method numpy.core.multiarray.array}
111456 0.095 0.000 0.095 0.000 {built-in method numpy.core.multiarray.where}
14 0.000 0.000 0.000 0.000 {built-in method posix.fspath}
4 0.000 0.000 0.000 0.000 {built-in method posix.getpid}
4 0.000 0.000 0.000 0.000 {built-in method sys._getframe}
5 0.000 0.000 0.000 0.000 {built-in method time.time}
8 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.RLock' objects}
532473 0.089 0.000 0.089 0.000 {method 'add' of 'set' objects}
875 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
16345 0.110 0.000 0.110 0.000 {method 'choice' of 'mtrand.RandomState' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
532473 0.097 0.000 0.097 0.000 {method 'discard' of 'set' objects}
188618 0.633 0.000 0.633 0.000 {method 'exponential' of 'mtrand.RandomState' objects}
4 0.000 0.000 0.000 0.000 {method 'find' of 'str' objects}
4 0.000 0.000 0.000 0.000 {method 'flush' of '_io.TextIOWrapper' objects}
8 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
354982 0.066 0.000 0.066 0.000 {method 'item' of 'numpy.ndarray' objects}
200001 0.196 0.000 0.196 0.000 {method 'nonzero' of 'numpy.ndarray' objects}
11887 0.052 0.000 0.052 0.000 {method 'randint' of 'mtrand.RandomState' objects}
167895 0.157 0.000 0.157 0.000 {method 'random_sample' of 'mtrand.RandomState' objects}
177491 0.251 0.000 0.251 0.000 {method 'ravel' of 'numpy.ndarray' objects}
643928 2.511 0.000 2.511 0.000 {method 'reduce' of 'numpy.ufunc' objects}
8 0.000 0.000 0.000 0.000 {method 'release' of '_thread.RLock' objects}
12 0.000 0.000 0.000 0.000 {method 'rfind' of 'str' objects}
2451118 0.328 0.000 0.328 0.000 {method 'rstrip' of 'str' objects}
8 0.000 0.000 0.000 0.000 {method 'write' of '_io.TextIOWrapper' objects}
最佳答案
numpy
是通过笔记本电脑上的 pip 以及桌面上的 Fedora 存储库安装的。删除包并通过 pip 安装它会从分析结果中删除 arrayprint (fillFormat)
,并且运行时现在非常相同(这仍然有点奇怪)。同样奇怪的是,其他 arrayprint
函数仍在调用,累计时间为 10 秒。
关于python - CPU 密集型代码在笔记本电脑上的运行速度是台式机的两倍,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46589996/
我在想出一个算法时遇到了麻烦... 我有一系列 GPS 数据,以 1 秒为间隔记录时间、速度、距离。假设距离是米,速度是米/秒。可能有超过 2 小时的数据,或 7200 个点。这里的“时间”字段主要是
使用java排序器,即: Collections.sort(myArrayList, new Comparator() { @Override public int c
有什么区别吗 SELECT * FROM my_table 和 SELECT my_column_id FROM my_table 地点: my_table 有百万行 网站上有大量并发用户进行sql查
有2个样本。 在第一个示例中,使用 orderby 可以更快地获得结果。 (根据 phpmyadmin 速度报告) 在另一个例子中,我没有使用 order by,它给出的结果较慢。 (根据 phpmy
我注意到,如果我将训练数据加载到内存中并将其作为 numpy 数组提供到图中,与使用相同大小的 shuffle 批次相比,速度会有很大差异,我的数据有大约 1000 个实例。 使用内存 1000 次迭
我在 python 中使用破折号。我正在绘制记录到 SQLite 数据库中的实时数据,目前,我正在绘制单个值与时间线图。我计划再添加 20 个图表,但目前,随着时间的增加, plotly 变慢,我认为
我试图调用 hasNext Velocity 模板中的方法,以便根据 foreach 循环中的位置影响行为 - 仅 hasNext没有按照文档工作。 这是 Velocity 用户指南的片段,关于 ha
在我正在制作的游戏中,我有两个点,pt1 和 pt2,我想计算出它们之间的角度。我已经在较早的计算中计算出距离。显而易见的方法是对垂直距离上的水平距离进行反正切 (tan(theta) = opp/a
我经常遇到字符串值不存在和/或为空的情况。这是测试这种情况的最佳方法吗? #if( $incentive.disclaimer && $!incentive.disclaimer != '' )
我想将一个模板nested包含在其他模板cont1,cont2和cont3中。 并且嵌套模板应仅对cont1隐藏一个特定控件。 在包含在cont1中之前,我想为一些标志变量$hideMyControl
是否可以更改从“Windows Azure Media Encoder”输出的音频的播放速度? 我正在使用配置为“WMA High Quality Audio”的“Windows Azure Medi
我使用速度将String(template)与字段合并 hi there I'am ${name}, And I'am ${age} old. velocity将字段${name}和${age}与一种
我使用的是 LockedBitmap 类,它简化了 C# 中位图数据的处理。目前它正在将数据复制到本地 byte[] 数组中,然后通过其类方法访问该数组以获取/设置像素颜色值。 这比直接通过指针访问锁
我尝试在 VM_global_library.vm 文件中添加一堆 #set($x=abc) 语句,但这些变量在我的 VM 模板中不可用。 我想为图像的基本路径等设置一个全局变量。这可能吗? 最佳答案
我的项目结构: -src --main ---java ----makers -----SomeClass ---resources ----htmlPattern.vm 如何告诉 SomeClass
我正在尝试从 Velocity 中的字符串中删除不需要的字符(换行符可以,但不能像 EM 和 CAN ASCII 控制字符那样)。 #set($cleanScreen = $cleanScreen.r
我想在日.月.年之间的点处分割日期。例如:2015 年 1 月 14 日至 {14, 01, 2015}这是我使用的代码:dates3.get(0) 包含我从页面的文本字段获取的字符串“14.01.2
之后,从 1.5 升级到速度引擎 1.7 出现了 1.5 没有的问题。为了解释这个问题,我必须展示一个代码片段: #foreach($someVariable in $someCollection)
我想知道从表中选择所有字段是否更快: SELECT * 或只选择您真正需要的: SELECT field1, field2, field3, field4, field5... 假设表有大约 10 个
我正在尝试模仿照片应用程序的行为,在该应用程序中,用户用手指平移照片并且照片具有一定的速度。由于我不会深入的原因,我不能将 UIScrollView 与它的缩放 UIImageView 一起使用,而是
我是一名优秀的程序员,十分优秀!