- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试根据一组xy 坐标
为散点图
和双变量高斯分布
设置动画。我会先记录调用散点和分布的具体代码,然后再记录我如何测量分布。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
import matplotlib.animation as animation
''' Below is a section of the script that generates the scatter and contour '''
fig, ax = plt.subplots(figsize = (10,4))
def plotmvs(df, xlim=None, ylim=None, fig=fig, ax=ax):
if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])
PDFs = []
for (group,gdf),color in zip(df.groupby('group'), ('red', 'blue')):
ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)
PDF = PDFs[0] - PDFs[1]
normPDF = PDF - PDF.min()
normPDF = normPDF/normPDF.max()
cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')
return fig, ax
n = 10
time = [1]
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})
tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i]) for k,v in d.items() for i,t in enumerate(time)]
df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']
for time,tdf in df.groupby('time'):
plotmvs(tdf)
'''MY ATTEMPT AT ANIMATING THE PLOT '''
def animate(i) :
tdf.set_offsets([[tdf.iloc[0:,1][0+i][0], tdf.iloc[0:,0][0+i][0]], [tdf.iloc[0:,1][0+i][1], tdf.iloc[0:,0][0+i][1]], [tdf.iloc[0:,1][0+i][2], tdf.iloc[0:,0][0+i][2]], [tdf.iloc[0:,1][0+i][3], tdf.iloc[0:,0][0+i][3]], [tdf.iloc[0:,1][0+i][4], tdf.iloc[0:,0][0+i][4]]])
normPDF = n[i,:,0,:].T
cfs.set_data(X, Y, normPDF)
ani = animation.FuncAnimation(fig, animate, np.arange(0,10),# init_func = init,
interval = 10, blit = False)
有关如何使用单帧生成和绘制分布的完整工作代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
import matplotlib.animation as animation
def datalimits(*data, pad=.15):
dmin,dmax = min(d.min() for d in data), max(d.max() for d in data)
spad = pad*(dmax - dmin)
return dmin - spad, dmax + spad
def rot(theta):
theta = np.deg2rad(theta)
return np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
def getcov(radius=1, scale=1, theta=0):
cov = np.array([
[radius*(scale + 1), 0],
[0, radius/(scale + 1)]
])
r = rot(theta)
return r @ cov @ r.T
def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):
X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))
XY = np.stack([X, Y], 2)
x,y = rot(theta) @ (velocity/2, 0) + (x, y)
cov = getcov(radius=radius, scale=scale, theta=theta)
PDF = sts.multivariate_normal([x, y], cov).pdf(XY)
return X, Y, PDF
def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
PDFs = []
for i,(x,y) in enumerate(zip(xs,ys)):
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdf(x, y,**kwargs)
PDFs.append(PDF)
return X, Y, np.sum(PDFs, axis=0)
fig, ax = plt.subplots(figsize = (10,4))
def plotmvs(df, xlim=None, ylim=None, fig=fig, ax=ax):
if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])
PDFs = []
for (group,gdf),color in zip(df.groupby('group'), ('red', 'blue')):
#Animate this scatter
ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)
PDF = PDFs[0] - PDFs[1]
normPDF = PDF - PDF.min()
normPDF = normPDF/normPDF.max()
#Animate this contour
cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')
return fig, ax
n = 10
time = [1]
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})
tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i]) for k,v in d.items() for i,t in enumerate(time)]
df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']
for time,tdf in df.groupby('time'):
plotmvs(tdf)
我基本上想通过遍历每一行 xy 坐标来为这段代码添加动画。
最佳答案
这是对 OP 代码的非常快速和肮脏的修改,修复散点动画并添加(一种形式的)轮廓动画。
基本上,您首先要创建 artists为您的动画(在本例中为 Line2D
对象,由 plot()
返回)。随后,您创建一个 update
函数(以及可选的初始化函数)。在那个函数中,你更新现有的艺术家。我认为 example in the matplotlib docs解释一切。
在这种情况下,我修改了 OP 的 plotmvs
函数以用作更新函数(而不是 OP 提议的 animate
函数)。
contourf
(即您的 cfs
)返回的 QuadContourSet
本身不能用作艺术家,但您可以使用cfs.collections
(支持 this SO answer )。但是,您仍然需要创建一个新的等高线图并删除旧的,而不仅仅是更新等高线数据。就个人而言,我更喜欢较低级别的方法:尝试在不调用 contourf
的情况下获取轮廓数据,然后像对散点图一样初始化和更新轮廓线。
不过,上面的方法是在下面的 OP 代码中实现的(只需复制、粘贴和运行):
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
from matplotlib.animation import FuncAnimation
# quick and dirty override of datalimits(), to get a fixed contour-plot size
DATA_LIMITS = [0, 70]
def datalimits(*data, pad=.15):
# dmin,dmax = min(d.min() for d in data), max(d.max() for d in data)
# spad = pad*(dmax - dmin)
return DATA_LIMITS # dmin - spad, dmax + spad
def rot(theta):
theta = np.deg2rad(theta)
return np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
def getcov(radius=1, scale=1, theta=0):
cov = np.array([
[radius*(scale + 1), 0],
[0, radius/(scale + 1)]
])
r = rot(theta)
return r @ cov @ r.T
def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):
X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))
XY = np.stack([X, Y], 2)
x,y = rot(theta) @ (velocity/2, 0) + (x, y)
cov = getcov(radius=radius, scale=scale, theta=theta)
PDF = sts.multivariate_normal([x, y], cov).pdf(XY)
return X, Y, PDF
def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
PDFs = []
for i,(x,y) in enumerate(zip(xs,ys)):
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdf(x, y,**kwargs)
PDFs.append(PDF)
return X, Y, np.sum(PDFs, axis=0)
fig, ax = plt.subplots(figsize = (10,4))
ax.set_xlim(DATA_LIMITS)
ax.set_ylim(DATA_LIMITS)
# Initialize empty lines for the scatter (increased marker size to make them more visible)
line_a, = ax.plot([], [], '.', c='red', alpha = 0.5, markersize=20, animated=True)
line_b, = ax.plot([], [], '.', c='blue', alpha = 0.5, markersize=20, animated=True)
cfs = None
# Modify the plotmvs function so it updates the lines
# (might as well rename the function to "update")
def plotmvs(tdf, xlim=None, ylim=None):
global cfs # as noted: quick and dirty...
if cfs:
for tp in cfs.collections:
# Remove the existing contours
tp.remove()
# Get the data frame for time t
df = tdf[1]
if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])
PDFs = []
for (group, gdf), group_line in zip(df.groupby('group'), (line_a, line_b)):
#Animate this scatter
#ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)
# Update the scatter line data
group_line.set_data(*gdf[['X','Y']].values.T)
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)
PDF = PDFs[0] - PDFs[1]
normPDF = PDF - PDF.min()
normPDF = normPDF / normPDF.max()
# Plot a new contour
cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')
# Return the artists (the trick is to return cfs.collections instead of cfs)
return cfs.collections + [line_a, line_b]
n = 10
time = range(n) # assuming n represents the length of the time vector...
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})
tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i])
for k,v in d.items() for i,t in enumerate(time)]
df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']
# Use the modified plotmvs as the update function, and supply the data frames
interval_ms = 200
delay_ms = 1000
ani = FuncAnimation(fig, plotmvs, frames=df.groupby('time'),
blit=True, interval=interval_ms, repeat_delay=delay_ms)
# Start the animation
plt.show()
关于python - 动画等高线和散点图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54015948/
我试图理解 findContours 的输出基于 this one 等教程和文档。我想知道为什么我得到我得到的输出。我有一个中间有一个正方形的 jpeg img,我的目标是找到正方形并为其着色(只是为
我有一组数据,其中包含 x 和 y 坐标以及每个坐标的计算值。网格是不规则的,所以现在我一直在创建一个散点图并将值分成多个箱子,以显示为下面链接中 img 上的等高线。 http://i.stack.
这个问题在这里已经有了答案: Test if a numpy array is a member of a list of numpy arrays, and remove it from the
我有一个存储为栅格的高程图。我想将平滑的“vector ”曲线拟合到恒定高度的轮廓。在我的应用程序中,数据实际上是地理海拔,但问题可以推广到两个变量的任何函数。 如果有帮助,我可以生成另一个具有抗锯齿
我想生成一个带有颜色条的等高线图/热图,然后添加一个注释框。这个数字很丑,但得到了我想要的: add_subplot() 是不够的。如果我尝试将所有内容都放在同一个子图中,则该框会被遮盖。我可以通过使
我正在尝试使用属于 ROOT 的 Minuit2 最小化器为具有物理限制的参数生成等高线图数据分析框架。不幸的是,当我尝试生成等高线图时,Minuit2 似乎有意将参数漂移到超出其限制的区域: >>>
我的目标是这种效果:(仅水平轮廓线): 我确实找到了 this example ,但是它会创建水平 和 垂直轮廓线。我无法完全理解如何调用 fwidth()正在生成线条。 uniform float
大家好,我是编程新手,我正在尝试做一些可能非常明显的事情,但对于我来说,我无法弄明白。我有一系列 x、y、z 数据(在我的例子中,对应于距离、深度和 pH 值)。我想使用 matplotlib 在 x
我是一名优秀的程序员,十分优秀!