gpt4 book ai didi

python - 动画等高线和散点图

转载 作者:太空宇宙 更新时间:2023-11-03 14:40:13 26 4
gpt4 key购买 nike

我正在尝试根据一组xy 坐标散点图双变量高斯分布 设置动画。我会先记录调用散点和分布的具体代码,然后再记录我如何测量分布。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
import matplotlib.animation as animation

''' Below is a section of the script that generates the scatter and contour '''

fig, ax = plt.subplots(figsize = (10,4))

def plotmvs(df, xlim=None, ylim=None, fig=fig, ax=ax):

if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])

PDFs = []
for (group,gdf),color in zip(df.groupby('group'), ('red', 'blue')):

ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)

kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)

PDF = PDFs[0] - PDFs[1]

normPDF = PDF - PDF.min()
normPDF = normPDF/normPDF.max()

cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')

return fig, ax

n = 10
time = [1]
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})


tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i]) for k,v in d.items() for i,t in enumerate(time)]

df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']

for time,tdf in df.groupby('time'):
plotmvs(tdf)


'''MY ATTEMPT AT ANIMATING THE PLOT '''

def animate(i) :
tdf.set_offsets([[tdf.iloc[0:,1][0+i][0], tdf.iloc[0:,0][0+i][0]], [tdf.iloc[0:,1][0+i][1], tdf.iloc[0:,0][0+i][1]], [tdf.iloc[0:,1][0+i][2], tdf.iloc[0:,0][0+i][2]], [tdf.iloc[0:,1][0+i][3], tdf.iloc[0:,0][0+i][3]], [tdf.iloc[0:,1][0+i][4], tdf.iloc[0:,0][0+i][4]]])
normPDF = n[i,:,0,:].T
cfs.set_data(X, Y, normPDF)

ani = animation.FuncAnimation(fig, animate, np.arange(0,10),# init_func = init,
interval = 10, blit = False)

有关如何使用单帧生成和绘制分布的完整工作代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
import matplotlib.animation as animation

def datalimits(*data, pad=.15):
dmin,dmax = min(d.min() for d in data), max(d.max() for d in data)
spad = pad*(dmax - dmin)
return dmin - spad, dmax + spad

def rot(theta):
theta = np.deg2rad(theta)
return np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])

def getcov(radius=1, scale=1, theta=0):
cov = np.array([
[radius*(scale + 1), 0],
[0, radius/(scale + 1)]
])

r = rot(theta)
return r @ cov @ r.T

def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):

X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))

XY = np.stack([X, Y], 2)

x,y = rot(theta) @ (velocity/2, 0) + (x, y)

cov = getcov(radius=radius, scale=scale, theta=theta)

PDF = sts.multivariate_normal([x, y], cov).pdf(XY)

return X, Y, PDF

def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
PDFs = []
for i,(x,y) in enumerate(zip(xs,ys)):
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdf(x, y,**kwargs)
PDFs.append(PDF)

return X, Y, np.sum(PDFs, axis=0)

fig, ax = plt.subplots(figsize = (10,4))

def plotmvs(df, xlim=None, ylim=None, fig=fig, ax=ax):

if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])

PDFs = []
for (group,gdf),color in zip(df.groupby('group'), ('red', 'blue')):

#Animate this scatter
ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)

kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)

PDF = PDFs[0] - PDFs[1]

normPDF = PDF - PDF.min()
normPDF = normPDF/normPDF.max()

#Animate this contour
cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')

return fig, ax

n = 10

time = [1]
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})

tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i]) for k,v in d.items() for i,t in enumerate(time)]

df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']

for time,tdf in df.groupby('time'):
plotmvs(tdf)

我基本上想通过遍历每一行 xy 坐标来为这段代码添加动画。

最佳答案

这是对 OP 代码的非常快速和肮脏的修改,修复散点动画并添加(一种形式的)轮廓动画。

基本上,您首先要创建 artists为您的动画(在本例中为 Line2D 对象,由 plot() 返回)。随后,您创建一个 update 函数(以及可选的初始化函数)。在那个函数中,你更新现有的艺术家。我认为 example in the matplotlib docs解释一切。

在这种情况下,我修改了 OP 的 plotmvs 函数以用作更新函数(而不是 OP 提议的 animate 函数)。

contourf(即您的 cfs)返回的 QuadContourSet 本身不能用作艺术家,但您可以使用cfs.collections(支持 this SO answer )。但是,您仍然需要创建一个新的等高线图并删除旧的,而不仅仅是更新等高线数据。就个人而言,我更喜欢较低级别的方法:尝试在不调用 contourf 的情况下获取轮廓数据,然后像对散点图一样初始化和更新轮廓线。

不过,上面的方法是在下面的 OP 代码中实现的(只需复制、粘贴和运行):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
from matplotlib.animation import FuncAnimation

# quick and dirty override of datalimits(), to get a fixed contour-plot size
DATA_LIMITS = [0, 70]

def datalimits(*data, pad=.15):
# dmin,dmax = min(d.min() for d in data), max(d.max() for d in data)
# spad = pad*(dmax - dmin)
return DATA_LIMITS # dmin - spad, dmax + spad

def rot(theta):
theta = np.deg2rad(theta)
return np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])

def getcov(radius=1, scale=1, theta=0):
cov = np.array([
[radius*(scale + 1), 0],
[0, radius/(scale + 1)]
])

r = rot(theta)
return r @ cov @ r.T

def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):

X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))

XY = np.stack([X, Y], 2)

x,y = rot(theta) @ (velocity/2, 0) + (x, y)

cov = getcov(radius=radius, scale=scale, theta=theta)

PDF = sts.multivariate_normal([x, y], cov).pdf(XY)

return X, Y, PDF

def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
PDFs = []
for i,(x,y) in enumerate(zip(xs,ys)):
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdf(x, y,**kwargs)
PDFs.append(PDF)

return X, Y, np.sum(PDFs, axis=0)


fig, ax = plt.subplots(figsize = (10,4))
ax.set_xlim(DATA_LIMITS)
ax.set_ylim(DATA_LIMITS)

# Initialize empty lines for the scatter (increased marker size to make them more visible)
line_a, = ax.plot([], [], '.', c='red', alpha = 0.5, markersize=20, animated=True)
line_b, = ax.plot([], [], '.', c='blue', alpha = 0.5, markersize=20, animated=True)
cfs = None

# Modify the plotmvs function so it updates the lines
# (might as well rename the function to "update")
def plotmvs(tdf, xlim=None, ylim=None):
global cfs # as noted: quick and dirty...
if cfs:
for tp in cfs.collections:
# Remove the existing contours
tp.remove()

# Get the data frame for time t
df = tdf[1]

if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])

PDFs = []

for (group, gdf), group_line in zip(df.groupby('group'), (line_a, line_b)):

#Animate this scatter
#ax.plot(*gdf[['X','Y']].values.T, '.', c=color, alpha = 0.5)

# Update the scatter line data
group_line.set_data(*gdf[['X','Y']].values.T)

kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)


PDF = PDFs[0] - PDFs[1]

normPDF = PDF - PDF.min()
normPDF = normPDF / normPDF.max()

# Plot a new contour
cfs = ax.contourf(X, Y, normPDF, levels=100, cmap='jet')

# Return the artists (the trick is to return cfs.collections instead of cfs)
return cfs.collections + [line_a, line_b]

n = 10
time = range(n) # assuming n represents the length of the time vector...
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})

tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i])
for k,v in d.items() for i,t in enumerate(time)]

df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']

# Use the modified plotmvs as the update function, and supply the data frames
interval_ms = 200
delay_ms = 1000
ani = FuncAnimation(fig, plotmvs, frames=df.groupby('time'),
blit=True, interval=interval_ms, repeat_delay=delay_ms)

# Start the animation
plt.show()

关于python - 动画等高线和散点图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54015948/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com