- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想将 Pandas 数据框作为一个整体放入 MS SQL Server 数据库的表中。像我这样的普通用户不允许批量插入。我正在使用 pyodbc 连接到我的数据库。我正在使用 Pandas 0.13.1。我在某处读到,从 0.14 版本开始,您可以使用 to_sql 方法,因此它不适用于我的 pandas 数据框。因此我使用了迭代器。我的数据框有 2 列:Col1 和 Col2。
我的代码正在运行,看起来像:
from pyodbc import connect
import pandasas pd
df = pd.read_csv('PathToMyCSVfile', sep=';', header=0)
cnxn = connect(DRIVER = '{SQL Server}', SERVER = 'MyServer', DATABASE = 'MyDatabase')
cursor = cnxn.cursor()
for index, row in df.interrows():
cursor.execute("INSERT INTO MySchema.MyTable VALUES (?,?)", df['Col1'][index], def['Col2'][index]
cnxn.commit()
如上所述,上面的代码可以工作,但速度很慢......我可以做些什么来加快速度?
最佳答案
您面临的瓶颈是您的代码为 DataFrame 中的每一行发送一个 INSERT 语句。也就是说,对于示例数据文件
id;txt
1;alpha
2;bravo
3;charlie
4;delta
5;echo
6;foxtrot
7;golf
您需要七 (7) 次往返服务器才能发送相当于
INSERT INTO MySchema.MyTable VALUES (1,'alpha')
INSERT INTO MySchema.MyTable VALUES (2,'bravo')
INSERT INTO MySchema.MyTable VALUES (3,'charlie')
...
INSERT INTO MySchema.MyTable VALUES (7,'golf')
您可以使用 Table Value Constructor 显着加快速度在一次往返中做同样的事情:
INSERT INTO MySchema.MyTable VALUES (1,'alpha'),(2,'bravo'),(3,'charlie'), ... ,(7,'golf')
下面的代码就是这样做的。当我使用包含 5000 行的文件对其进行测试时,使用 rows_per_batch=1000
(最大值)运行它比使用 rows_per_batch=1
(相当于您的目前的方法)。
import numpy
import pandas as pd
import pyodbc
import time
class MyDfInsert:
def __init__(self, cnxn, sql_stub, data_frame, rows_per_batch=1000):
# NB: hard limit is 1000 for SQL Server table value constructor
self._rows_per_batch = 1000 if rows_per_batch > 1000 else rows_per_batch
self._cnxn = cnxn
self._sql_stub = sql_stub
self._num_columns = None
self._row_placeholders = None
self._num_rows_previous = None
self._all_placeholders = None
self._sql = None
row_count = 0
param_list = list()
for df_row in data_frame.itertuples():
param_list.append(tuple(df_row[1:])) # omit zero-based row index
row_count += 1
if row_count >= self._rows_per_batch:
self._send_insert(param_list) # send a full batch
row_count = 0
param_list = list()
self._send_insert(param_list) # send any remaining rows
def _send_insert(self, param_list):
if len(param_list) > 0:
if self._num_columns is None:
# print('[DEBUG] (building items that depend on the number of columns ...)')
# this only happens once
self._num_columns = len(param_list[0])
self._row_placeholders = ','.join(['?' for x in range(self._num_columns)])
# e.g. '?,?'
num_rows = len(param_list)
if num_rows != self._num_rows_previous:
# print('[DEBUG] (building items that depend on the number of rows ...)')
self._all_placeholders = '({})'.format('),('.join([self._row_placeholders for x in range(num_rows)]))
# e.g. '(?,?),(?,?),(?,?)'
self._sql = f'{self._sql_stub} VALUES {self._all_placeholders}'
self._num_rows_previous = num_rows
params = [int(element) if isinstance(element, numpy.int64) else element
for row_tup in param_list for element in row_tup]
# print('[DEBUG] sql: ' + repr(self._sql))
# print('[DEBUG] params: ' + repr(params))
crsr = self._cnxn.cursor()
crsr.execute(self._sql, params)
if __name__ == '__main__':
conn_str = (
'DRIVER=ODBC Driver 11 for SQL Server;'
'SERVER=192.168.1.134,49242;'
'Trusted_Connection=yes;'
)
cnxn = pyodbc.connect(conn_str, autocommit=True)
crsr = cnxn.cursor()
crsr.execute("CREATE TABLE #tmp (id INT PRIMARY KEY, txt NVARCHAR(50))")
df = pd.read_csv(r'C:\Users\Gord\Desktop\Query1.txt', sep=';', header=0)
t0 = time.time()
MyDfInsert(cnxn, "INSERT INTO #tmp (id, txt)", df, rows_per_batch=1000)
print()
print(f'Inserts completed in {time.time() - t0:.2f} seconds.')
cnxn.close()
关于python - 无需使用 BULK INSERT 或 pandas to_sql 即可加快从 CSV 文件插入 SQL Server 的速度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46684359/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!