- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有以下 pyspark df:
+------------------+--------+-------+
| ID| Assets|Revenue|
+------------------+--------+-------+
|201542399349300619| 1633944| 32850|
|201542399349300629| 3979760| 850914|
|201542399349300634| 3402687|1983568|
|201542399349300724| 1138291|1097553|
|201522369349300122| 1401406|1010828|
|201522369349300137| 16948| 171534|
|201522369349300142|13474056|2285323|
|201522369349300202| 481045| 241788|
|201522369349300207| 700861|1185640|
|201522369349300227| 178479| 267976|
+------------------+--------+-------+
对于每一行,我希望能够获得 Assets 金额的 20% 以内的行。例如,对于第一行 (ID=201542399349300619),我希望能够获取 Assets 在 1,633,944 的 20% +/- 范围内的所有行(因此在 1,307,155 到 1,960,732 之间):
+------------------+--------+-------+
| ID| Assets|Revenue|
+------------------+--------+-------+
|201542399349300619| 1633944| 32850|
|201522369349300122| 1401406|1010828|
使用此子集表,我想获取平均 Assets 并将其添加为新列。所以对于上面的例子,这将是 (1633944+1401406) = 1517675 的平均 Assets
+------------------+--------+-------+---------+
| ID| Assets|Revenue|AvgAssets|
+------------------+--------+-------+---------+
|201542399349300619| 1633944| 32850| 1517675|
最佳答案
假设您的 DataFrame 具有类似于以下的架构(即 Assets
和 Revenue
是数字):
df.printSchema()
#root
# |-- ID: long (nullable = true)
# |-- Assets: integer (nullable = true)
# |-- Revenue: integer (nullable = true)
您可以 join在您提出的条件下,DataFrame 本身。加入后,您可以通过对 Assets
列取平均值进行分组和聚合。
例如:
from pyspark.sql.functions import avg, expr
df.alias("l")\
.join(
df.alias("r"),
on=expr("r.assets between l.assets*0.8 and l.assets*1.2")
)\
.groupBy("l.ID", "l.Assets", "l.Revenue")\
.agg(avg("r.Assets").alias("AvgAssets"))\
.show()
#+------------------+--------+-------+------------------+
#| ID| Assets|Revenue| AvgAssets|
#+------------------+--------+-------+------------------+
#|201542399349300629| 3979760| 850914| 3691223.5|
#|201522369349300202| 481045| 241788| 481045.0|
#|201522369349300207| 700861|1185640| 700861.0|
#|201522369349300137| 16948| 171534| 16948.0|
#|201522369349300142|13474056|2285323| 1.3474056E7|
#|201522369349300227| 178479| 267976| 178479.0|
#|201542399349300619| 1633944| 32850| 1517675.0|
#|201522369349300122| 1401406|1010828|1391213.6666666667|
#|201542399349300724| 1138291|1097553| 1138291.0|
#|201542399349300634| 3402687|1983568| 3691223.5|
#+------------------+--------+-------+------------------+
由于我们将 DataFrame 连接到自身,我们可以使用别名来引用左表 ("l"
) 和右表 ("r"
) .上面的逻辑说加入 l
到 r
条件是 r
中的 Assets 是 l 中 Assets 的 +/20%
。
有多种方法可以表达 +/20% 条件,但我使用 spark-sql between
表达式来查找 Assets * 0.8
和 Assets * 1.2
。
然后我们对左表的所有列 (groupBy
) 进行聚合,并对右表中的 Assets 进行平均。
生成的 AvgAssets
列是一个 FloatType
列,但您可以通过添加 .cast( "int")
在 .alias("AvgAssets")
之前,如果您喜欢的话。
另见:
关于python - Pyspark SQL 查询以获取特定列的 +/- 20% 的行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55049848/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!