- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个 PySpark 数据框(比如 df
),它有两列(Name
和 Score
)。以下是数据框的示例:
+------+-----+
| Name|Score|
+------+-----+
| name1|11.23|
| name2|14.57|
| name3| 2.21|
| name4| 8.76|
| name5|18.71|
+------+-----+
我有一个 numpy 数组(比如 bin_array
),它的值接近标题为 Score
的列中的数值PySpark 数据框。
下面是前面提到的numpy数组:
bin_array = np.array([0, 5, 10, 15, 20])
我想比较列 Score
中每一行的值值在 bin_array
中并将最接近的值(从 bin_array
获得)存储在 PySpark 数据帧的单独列中。
下面是我希望我的新数据框(比如 df_new
)的样子。
+------+-----+------------+
| Name|Score| Closest_bin|
+------+-----+------------+
| name1|11.23| 10.0 |
| name2|14.57| 15.0 |
| name3| 2.21| 0.0 |
| name4| 8.76| 10.0 |
| name5|18.71| 20.0 |
+------+-----+------------+
我有下面提到的函数,它给我最接近 bin_array
的值.当我用单独的数字测试它时,该函数工作正常。
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return float(array[idx])
在我的实际工作中,datafrmae 中会有数百万行。 什么是最有效的创建方式df_new
?
以下是我尝试用来创建用户定义函数 (udf) 和新数据框 (df_new
) 的步骤。
closest_bin_udf = F.udf( lambda x: find_nearest(array, x) )
df_new = df.withColumn( 'Closest_bin' , closest_bin_udf(df.Score) )
但是,我在尝试时遇到了错误 df_new.show()
.部分错误如下所示。
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-11-685c9b7e25d9> in <module>()
----> 1 df_new.show()
/usr/lib/spark/python/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
376 """
377 if isinstance(truncate, bool) and truncate:
--> 378 print(self._jdf.showString(n, 20, vertical))
379 else:
380 print(self._jdf.showString(n, int(truncate), vertical))
您可以使用下面提到的步骤来创建上述数据框:
from pyspark.sql import *
import pyspark.sql.functions as F
import numpy as np
Stats = Row("Name", "Score")
stat1 = Stats('name1', 11.23)
stat2 = Stats('name2', 14.57)
stat3 = Stats('name3', 2.21)
stat4 = Stats('name4', 8.76)
stat5 = Stats('name5', 18.71)
stat_lst = [stat1 , stat2, stat3, stat4, stat5]
df = spark.createDataFrame(stat_lst)
df.show()
最佳答案
您可以使用 bucketizer
来自 pyspark.mllib
from pyspark.sql import *
import pyspark.sql.functions as F
import numpy as np
Stats = Row("Name", "Score")
stat_lst = [Stats('name1', 11.23) , Stats('name2', 14.57), Stats('name3', 2.21), Stats('name4', 8.76), Stats('name5', 18.71)]
df = spark.createDataFrame(stat_lst)
from pyspark.ml.feature import Bucketizer
"""
Bucketizer creates bins like 0-5:0, 5-10:1, 10-15:2, 15-20:3
As I see, your expected output wants the closest numbered bin, so you might
have to change your buckets or the variable `t` below accordingly.
"""
bucket_list = [0, 5, 10, 15, 20]
bucketizer = Bucketizer(splits=bucket_list, inputCol="Score", outputCol="buckets")
df_buck = bucketizer.setHandleInvalid("keep").transform(df)
df_buck.show()
我仍在努力寻找最近的垃圾箱,我会更新我的答案。
如果您想要每个桶的数组值,您可以使用 udf 创建一个包含桶名称的新列
from pyspark.sql.functions import udf
from pyspark.sql.types import *
t = dict(zip(range(len(bucket_list)), bucket_list))
udf_foo = udf(lambda x: t[x], IntegerType())
df_buck = df_buck.withColumn("score_bucket", udf_foo("buckets"))
>>> df_buck.show()
+-----+-----+-------+------------+
| Name|Score|buckets|score_bucket|
+-----+-----+-------+------------+
|name1|11.23| 2.0| 10|
|name2|14.57| 2.0| 10|
|name3| 2.21| 0.0| 0|
|name4| 8.76| 1.0| 5|
|name5|18.71| 3.0| 15|
+-----+-----+-------+------------+
# Not dynamic, but please try to figure out this business logic according to your use-case
df_buck = df_buck.withColumn("correct_buckets", F.when(df_buck.Score-df_buck.score_bucket > 5/2, F.col("score_bucket") + 5).otherwise(F.col("score_bucket"))).drop("buckets", "score_bucket")
现在输出符合预期:
+-----+-----+---------------+
| Name|Score|correct_buckets|
+-----+-----+---------------+
|name1|11.23| 10|
|name2|14.57| 15|
|name3| 2.21| 0|
|name4| 8.76| 10|
|name5|18.71| 20|
+-----+-----+---------------+
关于python - 将具有最接近值的列添加到 PySpark Dataframe,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58334817/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!