- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用本文 https://machinelearningmastery.com/implement-random-forest-scratch-python/ 中的脚本在 Python 中实现随机森林算法并根据我的数据集修改它,但是当我运行代码时出现以下错误
Traceback (most recent call last):
File "C:----\scratch.py", line 211, in <module>
str_column_to_float(dataset, i)
File "C:----\scratch.py", line 31, in str_column_to_float
row[column] = float(row[column].strip())
ValueError: could not convert string to float: male
有什么好的办法可以解决吗?
我尝试在这部分代码中将我的属性male转换为数值
def replace_non_numeric(df):
df["Gender"] = df["Gender"].apply(lambda gender: 0 if gender == "male" else 1)
return df
train_df = replace_non_numeric(pd.read_csv("datatrain.csv"))
但还是出现错误
这是我的数据集
Id Age Gender Race Result
50 15 male Bi-Racial 1
51 14 female African-American 1
52 16 male African-American 0
53 18 male African-American 0
54 19 male African-American 1
55 16 male Caucasian 1
56 15 female African-American 1
57 15 male African-American 1
这是完整的代码
import pandas as pd
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.cross_validation import cross_val_score
from random import seed
from random import randrange
from csv import reader
from math import sqrt
# Load a CSV file
def load_csv(datatrain):
dataset = list()
with open(datatrain, 'r') as fr:
csv_reader = reader(fr)
header = next(csv_reader)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
def replace_non_numeric(df):
df["Gender"] = df["Gender"].apply(lambda gender: 0 if gender == "male" else 1)
return df
train_df = replace_non_numeric(pd.read_csv("datatrain.csv"))
# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# Convert string column to integer
def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# Split a dataset based on an attribute and an attribute value
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
# Calculate the Gini index for a split dataset
def gini_index(groups, classes):
# count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
# sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
# avoid divide by zero
if size == 0:
continue
score = 0.0
# score the group based on the score for each class
for class_val in classes:
p = [row[-1] for row in group].count(class_val) / size
score += p * p
# weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini
# Select the best split point for a dataset
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1)
if index not in features:
features.append(index)
for index in features:
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index':b_index, 'value':b_value, 'groups':b_groups}
# Create a terminal node value
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)
# Create child splits for a node or make terminal
def split(node, max_depth, min_size, n_features, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features)
split(node['left'], max_depth, min_size, n_features, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth+1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
# Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):
sample = list()
n_sample = round(len(dataset) * ratio)
while len(sample) < n_sample:
index = randrange(len(dataset))
sample.append(dataset[index])
return sample
# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees]
return max(set(predictions), key=predictions.count)
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
trees = list()
for i in range(n_trees):
sample = subsample(train, sample_size)
tree = build_tree(sample, max_depth, min_size, n_features)
trees.append(tree)
predictions = [bagging_predict(trees, row) for row in test]
return(predictions)
# Test the random forest algorithm
seed(2)
# load and prepare data
filename = 'datatrain.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0])-1):
str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
我正在尝试获得一个模型,该模型可以显示一个人(Id)根据其人口统计数据产生 0 或 1 的可能性有多大。如果我做错了什么,请指导我,或者也许我应该打印一些不同的内容为了看到更好的输出
最佳答案
调用df["Gender"]
将不起作用,因为您的csv文件的分隔符是空格,而您没有在train_df = Replace_non_numeric(pd.read_csv("datatrain .csv"))
。默认情况下,read_csv
假定 ,
将用于分离。
如果要使用可变的空间量进行分隔,则应使用正则表达式\s+
。相应的代码如下:
def replace_non_numeric(df):
print(df)
df["Gender"] = df["Gender"].apply(lambda gender: 0 if gender == "male" else 1)
print(df)
return df
train_df = replace_non_numeric(pd.read_csv("datatrain.csv", sep="\s+"))
这将返回:
Id Age Gender Race Result
0 50 15 male Bi-Racial 1
1 51 14 female African-American 1
2 52 16 male African-American 0
3 53 18 male African-American 0
4 54 19 male African-American 1
5 55 16 male Caucasian 1
6 56 15 female African-American 1
7 57 15 male African-American 1
Id Age Gender Race Result
0 50 15 0 Bi-Racial 1
1 51 14 1 African-American 1
2 52 16 0 African-American 0
3 53 18 0 African-American 0
4 54 19 0 African-American 1
5 55 16 0 Caucasian 1
6 56 15 1 African-American 1
7 57 15 0 African-American 1
关于python - 在 Python 中创建随机森林预测模型时遇到错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46948488/
对 R 和机器学习非常陌生,但是我必须开展一个项目来根据许多变量(例如,预测客户流失率)来预测客户流失。服务期限、发行的信用票据数量、错过交货的数量、价格上涨的数量等。 我正在使用 rpart 和 r
我有一个流读取准备将特征数据发布到一个已经注册的模型中。所有代码都在 Python 中。以下模型和元数据在常规笔记本中的流之外运行。在流中是另一回事。主要问题是从流中写入的数据(写入目标表)具有 NU
我正在尝试在 keras 中为时间序列实现一个简单的 LSTM 预测模型。我有 10 个时间序列,lookback_window=28,特征数为 1。我需要预测下一个值(timesteps=28,n_
我有一些用 R 语言开发的分类模型,具有 glm、rpart 等函数。从 Java 调用这些模型的计算效率最高的方法是什么?我看过 JRI,但看起来有很多基于文本的 R 调用。 有没有办法以低开销从
假设我有一个每月粒度的数据集,其中包含以下列: 时间戳 问题(即 GitHub 问题的数量) 2016-2019 年每个月都有数据,所以我相应地划分了数据。 training_data : 2016-
我是一名优秀的程序员,十分优秀!