gpt4 book ai didi

时间序列累积和的 Pythonic 代码

转载 作者:太空宇宙 更新时间:2023-11-03 14:35:40 27 4
gpt4 key购买 nike

我有一个 pandas 数据框,其中的 Date_of_Purchase 列包含许多 datetime 值:

dop_phev = rebates[rebates['Vehicle_Type']=='Plug-in Hybrid']['Date_of_Purchase']
dop_phev

输出:

0     2015-07-20
1 2015-07-20
3 2015-07-20
4 2015-07-24
5 2015-07-24
...
502 2017-09-16
503 2017-09-18
504 2017-06-14
505 2017-09-21
506 2017-09-22
Name: Date_of_Purchase, Length: 383, dtype: datetime64[ns]`

我想绘制累计购买量 y 与日期 x 的关系图。我开始研究一个解决方案,我循环遍历每个日期并计算所有小于该日期的日期,但这绝对是一个“非Pythonic”解决方案。我怎样才能用Pythonic代码完成这个任务?

编辑:我不确定它到底是什么样子,但这是我当前的解决方案:

dop_phev = rebates[rebates['Vehicle_Type']=='Plug-in Hybrid']['Date_of_Purchase']
cum_count = np.zeros(len(dop_phev.unique()))
for i, date in enumerate(dop_phev.unique()):
cum_count[i] = sum(dop_phev<date)
plt.plot(dop_phev.unique(),cum_count)

这不太有效...

仅供引用,我正在学习this dataset关于电动汽车的折扣。您可以在我的 GitHub 存储库 here 上找到数据的 CSV .

最佳答案

您可以使用Series.groupby然后Series.plot :

dop_phev = dop_phev.groupby(dop_phev).apply(lambda x: sum(dop_phev<x.name))
print (dop_phev)
2015-07-20 0
2015-07-24 3
2017-06-14 5
2017-09-16 6
2017-09-18 7
2017-09-21 8
2017-09-22 9
Name: Date_of_Purchase, dtype: int64

dop_phev.plot()

关于时间序列累积和的 Pythonic 代码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46969496/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com