- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
所以我试图将一组数据点拟合到这个方程:
abs(I) = Io(exp((qV)/(nKT)) - 1) --- 肖克利二极管方程
我得到了一堆数据点。知道 V 和 I 值后,我需要优化 Io 和 n 值,以获得与给定数据集紧密匹配的数据。
但是,scipy 优化曲线拟合并没有给我想要的值,即 n = ~1.15 和 Io = ~1.8E-13,而是给我 n = 2.12 和 I = 2.11E-11。我怀疑这是由于数据集值非常小,扰乱了优化,但即使我将初始猜测设置为 n = 1.15 和 Io = 1.8E-13,优化值也不会改变。
有人知道如何解决这个问题吗?
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
Voltage = np.array([-0.5 , -0.49, -0.48, -0.47, -0.46, -0.45, -0.44, -0.43, -0.42,
-0.41, -0.4 , -0.39, -0.38, -0.37, -0.36, -0.35, -0.34, -0.33,
-0.32, -0.31, -0.3 , -0.29, -0.28, -0.27, -0.26, -0.25, -0.24,
-0.23, -0.22, -0.21, -0.2 , -0.19, -0.18, -0.17, -0.16, -0.15,
-0.14, -0.13, -0.12, -0.11, -0.1 , -0.09, -0.08, -0.07, -0.06,
-0.05, -0.04, -0.03, -0.02, -0.01, 0. , 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 , 0.11, 0.12,
0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21,
0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 ,
0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ])
Current = np.array([ 6.99000000e-13, 6.83000000e-13, 6.57000000e-13,
6.46000000e-13, 6.19000000e-13, 6.07000000e-13,
5.86000000e-13, 5.73000000e-13, 5.55000000e-13,
5.37000000e-13, 5.27000000e-13, 5.08000000e-13,
4.92000000e-13, 4.75000000e-13, 4.61000000e-13,
4.43000000e-13, 4.32000000e-13, 4.18000000e-13,
3.99000000e-13, 3.91000000e-13, 3.79000000e-13,
3.66000000e-13, 3.54000000e-13, 3.43000000e-13,
3.34000000e-13, 3.18000000e-13, 3.06000000e-13,
2.96000000e-13, 2.86000000e-13, 2.77000000e-13,
2.66000000e-13, 2.59000000e-13, 2.54000000e-13,
2.43000000e-13, 2.33000000e-13, 2.22000000e-13,
2.16000000e-13, 2.07000000e-13, 2.00000000e-13,
1.94000000e-13, 1.85000000e-13, 1.77000000e-13,
1.68000000e-13, 1.58000000e-13, 1.48000000e-13,
1.35000000e-13, 1.21000000e-13, 1.03000000e-13,
7.53000000e-14, 4.32000000e-14, 2.33000000e-15,
6.46000000e-14, 1.57000000e-13, 2.82000000e-13,
4.58000000e-13, 7.07000000e-13, 1.06000000e-12,
1.57000000e-12, 2.28000000e-12, 3.29000000e-12,
4.75000000e-12, 6.80000000e-12, 9.76000000e-12,
1.39000000e-11, 1.82000000e-11, 2.57000000e-11,
3.67000000e-11, 5.21000000e-11, 7.39000000e-11,
1.04000000e-10, 1.62000000e-10, 2.27000000e-10,
3.21000000e-10, 4.48000000e-10, 6.21000000e-10,
8.70000000e-10, 1.20000000e-09, 1.66000000e-09,
2.27000000e-09, 3.08000000e-09, 4.13000000e-09,
5.46000000e-09, 7.05000000e-09, 8.85000000e-09,
1.11000000e-08, 1.39000000e-08, 1.74000000e-08,
2.05000000e-08, 2.28000000e-08, 2.52000000e-08,
2.91000000e-08])
def diode_function(V, n, Io):
kt = 300 * 1.38 * math.pow(10, -23)
q = 1.60 * math.pow(10, -19)
I_final = Io * (np.exp( (q * V) / (n * kt) ) - 1)
return abs(I_final)
p0 = [1.15, 1.8e-13]
popt, pcov = curve_fit(diode_function, Voltage, Current, p0 = p0)
print(popt)
fig = plt.figure()
ax = fig.add_subplot(121)
ax.set_title('I_d vs V_d')
ax.set_xlabel('V_d')
ax.set_ylabel('I_d')
ax.set_yscale('log')
plt.plot(Voltage, Current, 'ko', label="Original Data")
plt.plot(Voltage, diode_function(Voltage, *popt), 'r-', label="Fitted Curve")
plt.legend(loc='best')
ax = fig.add_subplot(122)
ax.set_title('I_d vs V_d')
ax.set_xlabel('V_d')
ax.set_ylabel('I_d')
ax.set_yscale('log')
popt = [1.15,1.8e-13]
plt.plot(Voltage, Current, 'ko', label="Original Data")
plt.plot(Voltage, diode_function(Voltage, *popt), 'r-', label="Fitted Curve")
plt.legend(loc='best')
plt.show()
左图是经过scipy优化的,右图是我想要的
最佳答案
我猜你是在正确的轨道上,使用对数来缩放数据,以使差异小得多。为了防止对数出现问题,一种常见的选择是添加一个常数。我们可以使用 log(x+constant)
来代替 log(x)
。该常数需要为 1 或更高。
使用不同的常数仍然会产生不同的结果,同样是因为在最小二乘法中较大的值的权重较高。
# imports and data as in question
def diode_function(V, n, Io):
kt = 300 * 1.38e-23
q = 1.60e-19
I_final = Io * (np.exp( (q * V) / (n * kt) ) - 1)
return np.abs(I_final)
p0 = [1.15, 1.8e-13]
popt, pcov = curve_fit(diode_function, Voltage, Current, p0 = p0)
fig, ax = plt.subplots()
ax.set_title('I_d vs V_d')
ax.set_xlabel('V_d')
ax.set_ylabel('I_d')
ax.set_yscale('log')
ax.plot(Voltage, Current, 'ko', label="Original Data")
offsets = [1,15]
colors = ["limegreen", "crimson"]
for offset, color in zip(offsets,colors):
logdf = lambda V,n,Io: np.log10(diode_function(V, n, Io)+offset)
poptn, pcovn = curve_fit(logdf, Voltage, np.log10(Current+offset), p0 = p0)
ax.plot(Voltage, 10**(logdf(Voltage, *poptn))-offset,
color=color, label="fit (offset: {})".format(offset))
ax.legend(loc='best')
plt.show()
关于python - Scipy 曲线拟合优化不适用于对数刻度值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47148803/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!