您链接到的代码是 Joe Kington 对 numpy 包的分支。
您发布的 git clone
命令将该分支的源代码下载到您的本地计算机。然后,您必须先编译并安装 numpy,然后才能使用此版本的 numpy。
获取isclose
函数的最简单方法是简单地将代码复制到文件中并导入:
utils_num.py
import numpy as np
def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
"""
https://github.com/joferkington/numpy/blob/3a85c0a9af64b0296b9a4c97f43f2f209c849077/numpy/core/numeric.py
Returns a boolean array where two arrays are element-wise equal within a
tolerance.
The tolerance values are positive, typically very small numbers. The
relative difference (`rtol` * abs(`b`)) and the absolute difference
`atol` are added together to compare against the absolute difference
between `a` and `b`.
Parameters
----------
a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN's as equal. If True, NaN's in `a` will be
considered equal to NaN's in `b` in the output array.
Returns
-------
y : array_like
Returns a boolean array of where `a` and `b` are equal within the
given tolerance. If both `a` and `b` are scalars, returns a single
boolean value.
See Also
--------
allclose
Notes
-----
For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
The above equation is not symmetric in `a` and `b`, so that
`isclose(a, b)` might be different from `isclose(b, a)` in
some rare cases.
Examples
--------
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])
"""
def within_tol(x, y, atol, rtol):
result = np.less_equal(abs(x - y), atol + rtol * abs(y))
if np.isscalar(a) and np.isscalar(b):
result = result[0]
return result
x = np.array(a, copy=False, ndmin=1)
y = np.array(b, copy=False, ndmin=1)
xfin = np.isfinite(x)
yfin = np.isfinite(y)
if np.all(xfin) and np.all(yfin):
return within_tol(x, y, atol, rtol)
else:
# Avoid subtraction with infinite/nan values...
cond = np.zeros(broadcast(x, y).shape, dtype=bool)
mask = xfin & yfin
cond[mask] = within_tol(x[mask], y[mask], atol, rtol)
# Check for equality of infinite values...
cond[~mask] = (x[~mask] == y[~mask])
if equal_nan:
# Make NaN == NaN
cond[isnan(x) & isnan(y)] = True
return cond
测试.py:
import utils_num as UN
print(UN.isclose([1e10,1e-7], [1.00001e10,1e-8]))
产量
array([ True, False], dtype=bool)
我是一名优秀的程序员,十分优秀!