- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我是 python 的新手。我使用了一些在网上找到的代码,并尝试对其进行处理。所以我正在创建一个文本文档矩阵,我想在训练逻辑回归模型之前添加一些额外的功能。
虽然我已经用 R 检查了我的数据并且我没有发现任何错误,但是当我运行逻辑回归时我得到了错误 “ValueError: Array contains NaN or infinity.” 我没有得到当我不添加自己的功能时出现同样的错误。我的功能在文件“toPython.txt”中。
注意两次调用 assert_all_finite 返回“None”的函数!
下面是我使用的代码和我得到的输出:
def _assert_all_finite(X):
if X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all():
raise ValueError("Array contains NaN or infinity.")
def assert_all_finite(X):
_assert_all_finite(X.data if sparse.issparse(X) else X)
def main():
print "loading data.."
traindata = list(np.array(p.read_table('data/train.tsv'))[:,2])
testdata = list(np.array(p.read_table('data/test.tsv'))[:,2])
y = np.array(p.read_table('data/train.tsv'))[:,-1]
tfv = TfidfVectorizer(min_df=12, max_features=None, strip_accents='unicode',
analyzer='word',stop_words='english', lowercase=True,
token_pattern=r'\w{1,}',ngram_range=(1, 1), use_idf=1,smooth_idf=1,sublinear_tf=1)
rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001,
C=1, fit_intercept=True, intercept_scaling=1.0,
class_weight=None, random_state=None)
X_all = traindata + testdata
lentrain = len(traindata)
f = np.array(p.read_table('data/toPython.txt'))
indices = np.nonzero(~np.isnan(f))
b = csr_matrix((f[indices], indices), shape=f.shape, dtype='float')
print b.get_shape
**print assert_all_finite(b)**
print "fitting pipeline"
tfv.fit(X_all)
print "transforming data"
X_all = tfv.transform(X_all)
print X_all.get_shape
X_all=hstack( [X_all,b], format='csr' )
print X_all.get_shape
**print assert_all_finite(X_all)**
X = X_all[:lentrain]
print "3 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=3, scoring='roc_auc'))
输出是:
loading data..
<bound method csr_matrix.get_shape of <10566x40 sparse matrix of type '<type 'numpy.float64'>'
with 422640 stored elements in Compressed Sparse Row format>>
**None**
fitting pipeline
transforming data
<bound method csr_matrix.get_shape of <10566x13913 sparse matrix of type '<type 'numpy.float64'>'
with 1450834 stored elements in Compressed Sparse Row format>>
<bound method csr_matrix.get_shape of <10566x13953 sparse matrix of type '<type 'numpy.float64'>'
with 1873474 stored elements in Compressed Sparse Row format>>
**None**
3 Fold CV Score:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Python27\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 523, in runfile
execfile(filename, namespace)
File "C:\Users\Stergios\Documents\Python\beat_bench.py", line 100, in <module>
main()
File "C:\Users\Stergios\Documents\Python\beat_bench.py", line 97, in main
print "3 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=3, scoring='roc_auc'))
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1152, in cross_val_score
for train, test in cv)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 517, in __call__
self.dispatch(function, args, kwargs)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 312, in dispatch
job = ImmediateApply(func, args, kwargs)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 136, in __init__
self.results = func(*args, **kwargs)
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1064, in _cross_val_score
score = scorer(estimator, X_test, y_test)
File "C:\Python27\lib\site-packages\sklearn\metrics\scorer.py", line 141, in __call__
return self._sign * self._score_func(y, y_pred, **self._kwargs)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 403, in roc_auc_score
fpr, tpr, tresholds = roc_curve(y_true, y_score)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 672, in roc_curve
fps, tps, thresholds = _binary_clf_curve(y_true, y_score, pos_label)
File "C:\Python27\lib\site-packages\sklearn\metrics\metrics.py", line 504, in _binary_clf_curve
y_true, y_score = check_arrays(y_true, y_score)
File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 233, in check_arrays
_assert_all_finite(array)
File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 27, in _assert_all_finite
raise ValueError("Array contains NaN or infinity.")
ValueError: Array contains NaN or infinity.
有什么想法吗?谢谢!!
最佳答案
我发现执行以下操作时,假设 sm
是一个稀疏矩阵(我的是 CSR
矩阵,如果你知道请说说其他类型!)效果很好:
用数据向量中的适当数字手动替换 nan
:
In [4]: np.isnan(matrix.data).any()
Out[4]: True
In [5]: sm.data.shape
Out[5]: (553555,)
In [6]: sm.data = np.nan_to_num(sm.data)
In [7]: np.isnan(matrix.data).any()
Out[7]: False
In [8]: sm.data.shape
Out[8]: (553555,)
因此我们不再有 nan
值,但矩阵将这些零显式编码为有值索引。
从稀疏矩阵中移除显式编码的零值:
In [9]: sm.eliminate_zeros()
In [10]: sm.data.shape
Out[10]: (551391,)
我们的矩阵现在实际上变小了,耶!
关于python - 如何修复 python 中稀疏矩阵的 "NaN or infinity"问题?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18948086/
假设我有两个矩阵,每个矩阵有两列和不同的行数。我想检查并查看一个矩阵的哪些对在另一个矩阵中。如果这些是一维的,我通常只会做 a %in% x得到我的结果。 match似乎只适用于向量。 > a
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 个月前。 Improv
我只处理过 DirectX 矩阵 我读过一些文章,说不能将 DirectX 矩阵数学库用于 openGL 矩阵。 但我也读过,如果你的数学是一致的,你可以获得类似的结果。那只会让我更加困惑。 任何人都
我编写了一个C++代码来解决线性系统A.x = b,其中A是一个对称矩阵,方法是首先使用LAPACK(E)对角矩阵A = V.D.V^T(因为以后需要特征值),然后求解x = A^-1.b = V^T
我遇到了问题。我想创建二维数组 rows=3 cols=2我的代码如下 int **ptr; int row=3; int col=2; ptr=new int *[col]; for (int i=
我有一个 3d mxnxt 矩阵,我希望能够提取 t 2d nxm 矩阵。在我的例子中,我有一个 1024x1024x10 矩阵,我想要 10 张图像显示给我。 这不是 reshape ,我每次只需要
我在 MATLAB 中有一个 3d 矩阵 (n-by-m-by-t) 表示一段时间内网格中的 n-by-m 测量值.我想要一个二维矩阵,其中空间信息消失了,只剩下 n*m 随着时间 t 的测量值(即:
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
使用 eigen2 , 并给定一个矩阵 A a_0_0, a_0_1, a_0_2, ... a_1_0, a_1_0, a_1_2, ... ... 和一个矩阵B: b_0_0, b_0_1, b_
我想知道如何获得下面的布局。 在中型和大型设备上,我希望有 2 行和 2 列的布局(2 x 2 矩阵)。 在小型(和超小型)设备上或调整为小型设备时,我想要一个 4 行和 1 列的矩阵。 我将通过 a
有什么方法可以向量化以下内容: for i = 1:6 te = k(:,:,:,i).*(c(i)); end 我正在尝试将 4D 矩阵 k 乘以向量 c,方法是将其
如何从填充有 1 和 0 的矩阵中抽取 n 个随机点的样本? a=rep(0:1,5) b=rep(0,10) c=rep(1,10) dataset=matrix(cbind(a,b,c),nrow
我正在尝试创建一个包含 X 个 X 的矩阵。以下代码生成从左上角到右下角的 X 对 Angular 线,而不是从右上角到左下角的 X 对 Angular 线。我不确定从哪里开始。是否应该使用新变量创建
我想在 python 中创建一个每行三列的矩阵,并能够通过任何一行对它们进行索引。矩阵中的每个值都是唯一的。 据我所知,我可以设置如下矩阵: matrix = [["username", "name"
我有点迷茫 我创建了一个名为 person 的类,它具有 age 和 name 属性(以及 get set 方法)。然后在另一个类中,我想创建一个 persons 数组,其中每个人都有不同的年龄和姓名
我有 n 个类,它们要么堆叠,要么不堆叠。所有这些类都扩展了同一个类 (CellObject)。我知道更多类将添加到此列表中,我想创建一种易于在一个地方操纵“可堆叠性”的方法。 我正在考虑创建一个矩阵
我有一个包含 x 个字符串名称及其关联 ID 的文件。本质上是两列数据。 我想要的是一个格式为 x x x 的相关样式表(将相关数据同时作为 x 轴和 y 轴),但我想要 fuzzywuzzy 库的函
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
当我在 julia 中输入这个错误跳转但我不知道为什么,它应该工作。/ julia> A = [1 2 3 4; 5 6 7 8; 1 2 3 4; 5 6 7 8] 4×4 Array{Int64,
我是一名优秀的程序员,十分优秀!