gpt4 book ai didi

python - 如何在 Python 中计算干湿拼写?

转载 作者:太空宇宙 更新时间:2023-11-03 14:26:21 24 4
gpt4 key购买 nike

我有一个包含四列的随机时间序列数据,例如:年、月、日、降水量。我想计算不同拼写长度的干/湿拼写。我正在寻找一种更方便的方法来做到这一点,同时目前正在处理一些丑陋的代码,如下所示:

import numpy as np
data = np.loadtxt('Data Series.txt', usecols=(1,3))
dry = np.zeros(12)
wet = np.zeros(12)

rows,cols = data.shape #reading number of rows and columns into variables

for i in xrange (0,rows):
for m in xrange(0,12):
if data[i,1] == 0 and data[i-1,1] == 0 and data[i-2,1] == 0:
if data[i,0] == m+1:
dry[m] += 1.0
if data[i,1] > 0 and data[i-1,1] > 0 and data[i-2,1] > 0:
if data[i,0] == m+1:
wet[m] += 1.0
print '3 Days Dry Spell\n', dry
print '3 Days Wet Spell\n', wet

现在,如果我想计算 4、5、6 天的法术,那么“if data[i,1] == 0 and data[i-1,1] == 0.....”就变成了一个巨大的。任何人都可以帮助我,这样我就可以只给出拼写长度而不是这条又长又丑的线吗?

最佳答案

你可能想尝试这样的事情:

# first extract precipitation data for later use
precipitation = [data[i][1] for i in xrange(0, rows)]

# then test the range (i, i+m)
all_dry = all([(data==0) for data in precipitation[i:i+m]])
all_wet = not any([(data==0) for data in precipitation[i:i+m]])
# of course you can also use
all_wet = all([(data>0) for data in precipitation[i:i+m]])

但是请注意,这种方法在测试相邻天时会引入冗余计算,因此可能不适合处理大量数据。

已编辑:

好吧,这次让我们寻找一种更有效的方法。

# still extract precipitation data for later use first
precipitation = [data[i][1] for i in xrange(0, rows)]

# let's start our calculations by counting the longest consecutive dry days
consecutive_dry = [1 if data == 0 else 0 for data in precipitation]
for i in xrange(1, len(consecutive_dry))
if consecutive_dry[i] == 1:
consecutive_dry[i] += consecutive_dry[i - 1]

# then you will see, if till day i there're m consecutive dry days, then:
consecutive_dry[i] >= m # here is the test

# ...and it would be same for wet day testings.

这显然比上面的方法更有效:对于连续M个范围的总共N天的测试,前一个需要O(N * M)次操作来计算,这个需要O(N)。

再次编辑:

这是原始代码的编辑版本。由于您的代码可以运行,因此它也可以在您的 PC 或其他设备上运行。

import numpy as np
data = np.loadtxt('Data Series.txt', usecols=(1,3))
dry = np.zeros(12)
wet = np.zeros(12)

rows,cols = data.shape #reading number of rows and columns into variables

# prepare
precipitation = [data[i][1] for i in xrange(0, rows)]

# collecting data for consecutive dry days
consecutive_dry = [1 if data == 0 else 1 for data in precipitation]
for i in xrange(1, len(consecutive_dry))
if consecutive_dry[i] == 1:
consecutive_dry[i] += consecutive_dry[i - 1]

# ...and for wet days
consecutive_wet = [1 if data > 0 else 0 for data in precipitation]
for i in xrange(1, len(consecutive_wet))
if consecutive_wet[i] == 1:
consecutive_wet[i] += consecutive_wet[i - 1]

# set your day range here.
day_range = 3

for i in xrange (0,rows):
if consecutive_dry[i] >= day_range:
month_id = data[i,0]
dry[month_id - 1] += 1
if consecutive_wet[i] >= day_range:
month_id = data[i,0]
wet[month_id - 1] += 1

print '3 Days Dry Spell\n', dry
print '3 Days Wet Spell\n', wet

请试试这个,如果有任何问题请告诉我。

关于python - 如何在 Python 中计算干湿拼写?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19726490/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com