gpt4 book ai didi

python - 寻找 tensorflow 模型的准确性

转载 作者:太空宇宙 更新时间:2023-11-03 14:12:35 24 4
gpt4 key购买 nike

在使用 sigmoid 函数训练这个简单的线性模型后,我试图找到准确性:

import numpy as np
import tensorflow as tf
import _pickle as cPickle

with open("var_x.txt", "rb") as fp: # Unpickling
var_x = cPickle.load(fp)

with open("var_y.txt", "rb") as fp: # Unpickling
var_y = cPickle.load(fp)

with open("var_x_test.txt", "rb") as fp: # Unpickling
var_x_test = cPickle.load(fp)

with open("var_y_test.txt", "rb") as fp: # Unpickling
var_y_test = cPickle.load(fp)

def model_fn(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [4], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = tf.sigmoid( tf.reduce_sum(W*features['x']) + b)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=y)

loss = tf.reduce_sum(tf.square(y - labels))

global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))

return tf.estimator.EstimatorSpec(
mode=mode,
predictions=y,
loss=loss,
train_op=train)

estimator = tf.estimator.Estimator(model_fn=model_fn)

x_train = np.array(var_x)
y_train = np.array(var_y)
x_test = np.array(var_x_test)
y_test = np.array(var_y_test)

input_fn = tf.estimator.inputs.numpy_input_fn(
{"x": x_train}, y_train, batch_size=4, num_epochs=60, shuffle=True)

estimator.train(input_fn=input_fn, steps=1000)

test_input_fn= tf.estimator.inputs.numpy_input_fn(
x ={"x":np.array(x_test)},
y=np.array(y_test),
num_epochs=1,
shuffle=False
)

accuracy_score = estimator.evaluate(input_fn=test_input_fn["accuracy"])

print(accuracy_score)

但是字典没有“准确性”键。我如何找到它?另外,如何使用张量板来跟踪每一步后的准确性?

提前谢谢您,tensorflow教程的解释非常糟糕。

最佳答案

您需要使用 tf.metrics.accuracymodel_fn 中自行创建准确度并将其传递给函数将返回的 eval_metric_ops

def model_fn(features, labels, mode):
# define model...
y = tf.nn.sigmoid(...)
predictions = tf.cast(y > 0.5, tf.int64)
eval_metric_ops = {'accuracy': tf.metrics.accuracy(labels, predictions)}
#...
return tf.estimator.EstimatorSpec(mode=mode, train_op=train_op,
loss=loss, eval_metric_ops=eval_metric_ops)

然后,estimator.evaluate() 的输出将包含一个精度键,该键将保存在验证集上计算的精度。

metrics = estimator.evaluate(test_input_fn)
print(metrics['accuracy'])

关于python - 寻找 tensorflow 模型的准确性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48392776/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com