- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在以下维度的 python 中有两个稀疏矩阵(a
和 b
):
a = <240760x2177930 sparse matrix of type '<class 'numpy.float64'>'
with 1127853 stored elements in Compressed Sparse Row format>
和
b = <240760x2177930 sparse matrix of type '<class 'numpy.float64'>'
with 439309 stored elements in Compressed Sparse Row format>
问题:我想得到一个长度为 240760 的列向量,它是两个矩阵的逐行点积。例如,dot(a[0],b[0])
将是我的输出向量的第一个元素。 dot(a[1],b[1])
将是第二个,依此类推。
是否有矢量化的简单方法来完成此任务?
编辑:实现此目的的一种方法是将每一行转换为密集向量,将其展平,然后使用 numpy.dot()
。像这样的东西:
np.dot(np.array(a[0]).flatten(),np.array(b[0]).flatten()).
但这需要逐行迭代并将每一行转换为密集向量,这是非常耗时的。我在想可能有更简单的方法来做到这一点......
最佳答案
scipy
稀疏矩阵是在 numpy
矩阵子类上建模的,因此将 *
实现为矩阵乘法。 a.multiply
是逐个元素的乘法,例如 np.array
*
使用的。
我建议制作几个小矩阵,并尝试各种形式的乘法,包括您认为的 np.dot
等价物。可以更容易地分辨出小东西的情况。
a = np.arange(12).reshape(3,4)
a1 = sparse.csr_matrix(a)
np.dot(a, a.T)
a1 * a.T
a*a
a1.multiply(a1)
etc
仅供引用,这是你想要的吗(使用密集数组):
In [7]: a=np.arange(12).reshape(3,4)
In [8]: [np.dot(a[i],a[i]) for i in range(3)]
Out[8]: [14, 126, 366]
In [9]: np.einsum('ij,ij->i',a,a)
Out[9]: array([ 14, 126, 366])
和稀疏
In [11]: a1=sparse.csr_matrix(a)
完整的矩阵或点积比你想要的要多,对吧?您只需要对角线。
In [15]: (a1*a1.T).A
Out[15]:
array([[ 14, 38, 62],
[ 38, 126, 214],
[ 62, 214, 366]], dtype=int32)
In [16]: a.dot(a.T)
Out[16]:
array([[ 14, 38, 62],
[ 38, 126, 214],
[ 62, 214, 366]])
In [21]: (a1*a1.T).diagonal()
Out[21]: array([ 14, 126, 366], dtype=int32)
对于非常稀疏的事物,采用全矩阵乘法后跟对角线相乘可能与任何替代方法一样快。迭代稀疏矩阵的行是一个相对较慢的操作,而矩阵乘法已在快速的 c 代码中实现。
另一种方式 - 元素乘法后加和。
In [22]: np.sum(a*a,axis=1)
Out[22]: array([ 14, 126, 366])
In [23]: a1.multiply(a1).sum(axis=1)
Out[23]:
matrix([[ 14],
[126],
[366]], dtype=int32)
sparse 将 sum
实现为矩阵乘法(按一列 1)。
In [26]: a1.multiply(a1)*np.array([1,1,1,1])[:,None]
Out[26]:
array([[ 14],
[126],
[366]], dtype=int32)
关于python - 点积稀疏矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36782588/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!