- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
>> x=np.ma.array(np.arange(4).reshape((2,2)), mask = [[True,T-6ren">
我想从压缩的掩码数组和相应的掩码创建一个数组。用一个例子更容易解释这一点:
>>> x=np.ma.array(np.arange(4).reshape((2,2)), mask = [[True,True],[False,False]])
>>> y=x.compressed()
>>> y
array([ 2, 3])
现在我想创建一个与 x 形状相同的数组,其中掩码值获得标准值(例如 -1),其余部分填充给定数组。它应该像这样工作:
>>> z = decompress(y, mask=[[True,True],[False,False]], default=-1)
>>> z
array([[-1, -1],
[ 2, 3]])
问题是:有没有类似“解压”的方法,还是需要自己编码?在 Fortran 中,这是通过“pack”和“unpack”方法完成的。感谢您的任何建议。
最佳答案
虽然我已经回答了很多 ma
问题,但我绝不是这方面的专家。但我会探讨这个问题
让我们概括一下您的数组:
In [934]: x=np.ma.array(np.arange(6).reshape((2,3)), mask = [[True,True,False],[False,False,True]])
In [935]: x
Out[935]:
masked_array(data =
[[-- -- 2]
[3 4 --]],
mask =
[[ True True False]
[False False True]],
fill_value = 999999)
In [936]: y=x.compressed()
In [937]: y
Out[937]: array([2, 3, 4])
y
除了值的子集外没有关于 x
的信息。注意是 1d
x
将其值存储在 2 个数组中(实际上这些是访问底层 ._data
、._mask
属性的属性):
In [938]: x.data
Out[938]:
array([[0, 1, 2],
[3, 4, 5]])
In [939]: x.mask
Out[939]:
array([[ True, True, False],
[False, False, True]], dtype=bool)
我的猜测是,要解压缩
,我们需要使用正确的数据类型、形状和掩码创建一个空
掩码数组,并复制的值y
到它的 data
中。但是应该将什么值放入 data
的屏蔽元素中?
或者另一种表达问题的方式——是否可以将值从 y
复制回 x
?
一种可能的解决方案是将新值复制到 x[~x.mask]
:
In [957]: z=2*y
In [958]: z
Out[958]: array([4, 6, 8])
In [959]: x[~x.mask]=z
In [960]: x
Out[960]:
masked_array(data =
[[-- -- 4]
[6 8 --]],
mask =
[[ True True False]
[False False True]],
fill_value = 999999)
In [961]: x.data
Out[961]:
array([[0, 1, 4],
[6, 8, 5]])
或者创建一个新数组
In [975]: w=np.zeros_like(x)
In [976]: w[~w.mask]=y
In [977]: w
Out[977]:
masked_array(data =
[[-- -- 2]
[3 4 --]],
mask =
[[ True True False]
[False False True]],
fill_value = 999999)
In [978]: w.data
Out[978]:
array([[0, 0, 2],
[3, 4, 0]])
另一种方法是创建一个常规数组,full
包含无效值,像这样复制 y
,然后将整个数组变成一个屏蔽数组。可能存在一个掩码数组构造函数,它允许您仅指定有效值和掩码。但我必须为此深入研究文档。
===============
将执行此操作的另一个操作序列,使用 np.place
设置值
In [1011]: w=np.empty_like(x)
In [1014]: np.place(w,w.mask,999)
In [1015]: np.place(w,~w.mask,[1,2,3])
In [1016]: w
Out[1016]:
masked_array(data =
[[-- -- 1]
[2 3 --]],
mask =
[[ True True False]
[False False True]],
fill_value = 999999)
In [1017]: w.data
Out[1017]:
array([[999, 999, 1],
[ 2, 3, 999]])
====================
看看
https://github.com/numpy/numpy/blob/master/numpy/ma/core.py
class _MaskedBinaryOperation:
此类用于实现屏蔽的ufunc
。它在有效单元格(未屏蔽)处评估 ufunc
并返回一个包含有效单元格的新屏蔽数组,屏蔽值保持不变(与原始值相同)
例如,对于一个简单的掩码数组,+1
不会更改掩码值。
In [1109]: z=np.ma.masked_equal([1,0,2],0)
In [1110]: z
Out[1110]:
masked_array(data = [1 -- 2],
mask = [False True False],
fill_value = 0)
In [1111]: z.data
Out[1111]: array([1, 0, 2])
In [1112]: z+1
Out[1112]:
masked_array(data = [2 -- 3],
mask = [False True False],
fill_value = 0)
In [1113]: _.data
Out[1113]: array([2, 0, 3])
In [1114]: z.compressed()+1
Out[1114]: array([2, 3])
_MaskedUnaryOperation
可能更容易理解,因为它只需要使用 1 个掩码数组。
例如,常规日志在屏蔽 0 值时出现问题:
In [1115]: z.log()
...
/usr/local/bin/ipython3:1: RuntimeWarning: divide by zero encountered in log
#!/usr/bin/python3
Out[1116]:
masked_array(data = [0.0 -- 0.6931471805599453],
mask = [False True False],
fill_value = 0)
但是屏蔽的日志跳过了屏蔽的条目:
In [1117]: np.ma.log(z)
Out[1117]:
masked_array(data = [0.0 -- 0.6931471805599453],
mask = [False True False],
fill_value = 0)
In [1118]: _.data
Out[1118]: array([ 0. , 0. , 0.69314718])
糟糕 - _MaskedUnaryOperation
可能没那么有用。它在所有值 np.ma.getdata(z)
上评估 ufunc
,并使用 errstate
上下文来阻止警告。然后它使用掩码将掩码值复制到结果 (np.copyto(result, d, where=m)
)。
关于python - 反转 "numpy.ma.compressed"操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38855058/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!