我有一个声音信号,作为 numpy 数组导入,我想将它切割成 numpy 数组 block 。但是,我希望 block 只包含高于阈值的元素。例如:
threshold = 3
signal = [1,2,6,7,8,1,1,2,5,6,7]
应该输出两个数组
vec1 = [6,7,8]
vec2 = [5,6,7]
好的,上面是列表,但你明白我的意思了。
这是我到目前为止尝试过的方法,但这只会耗尽我的 RAM
def slice_raw_audio(audio_signal, threshold=5000):
signal_slice, chunks = [], []
for idx in range(0, audio_signal.shape[0], 1000):
while audio_signal[idx] > threshold:
signal_slice.append(audio_signal[idx])
chunks.append(signal_slice)
return chunks
这是一种方法-
def split_above_threshold(signal, threshold):
mask = np.concatenate(([False], signal > threshold, [False] ))
idx = np.flatnonzero(mask[1:] != mask[:-1])
return [signal[idx[i]:idx[i+1]] for i in range(0,len(idx),2)]
sample 运行-
In [48]: threshold = 3
...: signal = np.array([1,1,7,1,2,6,7,8,1,1,2,5,6,7,2,8,7,2])
...:
In [49]: split_above_threshold(signal, threshold)
Out[49]: [array([7]), array([6, 7, 8]), array([5, 6, 7]), array([8, 7])]
运行时测试
其他方法-
# @Psidom's soln
def arange_diff(signal, threshold):
above_th = signal > threshold
index, values = np.arange(signal.size)[above_th], signal[above_th]
return np.split(values, np.where(np.diff(index) > 1)[0]+1)
# @Kasramvd's soln
def split_diff_step(signal, threshold):
return np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)[1::2]
时间 -
In [67]: signal = np.random.randint(0,9,(100000))
In [68]: threshold = 3
# @Kasramvd's soln
In [69]: %timeit split_diff_step(signal, threshold)
10 loops, best of 3: 39.8 ms per loop
# @Psidom's soln
In [70]: %timeit arange_diff(signal, threshold)
10 loops, best of 3: 20.5 ms per loop
In [71]: %timeit split_above_threshold(signal, threshold)
100 loops, best of 3: 8.22 ms per loop
我是一名优秀的程序员,十分优秀!