gpt4 book ai didi

python - 基于 cumsum 和 timediff 创建标志

转载 作者:太空宇宙 更新时间:2023-11-03 14:03:39 25 4
gpt4 key购买 nike

考虑以下数据框,

import pandas as pd
import numpy as np

np.random.seed(666)
dd=pd.DataFrame({'v1': np.random.choice(range(30), 20),
'v2': np.random.choice(pd.date_range(
'5/3/2016', periods=365, freq='D'),
20, replace=False)
})
dd=dd.sort_values('v2')

# v1 v2
#5 4 2016-05-03
#11 14 2016-05-26
#19 12 2016-06-26
#15 8 2016-07-06
#7 27 2016-08-04
#4 9 2016-08-28
#17 5 2016-09-08
#13 16 2016-10-04
#14 14 2016-10-10
#18 18 2016-11-25
#3 6 2016-12-03
#8 19 2016-12-04
#12 1 2016-12-12
#10 28 2017-01-14
#1 2 2017-02-12
#0 12 2017-02-15
#9 28 2017-03-11
#6 29 2017-03-18
#16 7 2017-03-21
#2 13 2017-04-29

我想创建基于以下两个条件的组:

  1. v1 <= 40 的累计总和
  2. v2 <= 61的时差天

换句话说,每个组的总和必须是 40 v1或2个月的时间。因此,如果 61 天过去了,但 40 天还没有完成,那么无论如何都要关闭该组。如果 40 在 1 天内完成,再次关闭该组

最后的标志是,

dd['expected_flag']=[1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9]

我在 R here 中问过一个非常相似的问题但是现在(日期)有一个新的要求,我无法完全理解它。

注意我将在庞大的数据集中运行它,因此效率越高越好

编辑:我找到了this question它基本上处理第一个条件而不是日期条件

编辑 2:61 天的时差只是为了表示时间限制。实际上,这种限制将在几分钟内完成

编辑 3:使用@Maarten 提供的函数,我得到以下(前 40 行),其中第 1 组还应包括第 2 组的前 2 个(即 v1=6 和 v1 =6).

Out[330]: 
index v2 v1 max_limit group
0 2 2017-04-01 00:00:02 14 335.0 1
1 3 2017-04-01 00:00:03 8 335.0 1
2 13 2017-04-01 00:00:13 11 335.0 1
3 14 2017-04-01 00:00:14 11 335.0 1
4 29 2017-04-01 00:00:29 4 335.0 1
5 44 2017-04-01 00:00:44 16 335.0 1
6 52 2017-04-01 00:00:52 10 335.0 1
7 58 2017-04-01 00:00:58 11 335.0 1
8 65 2017-04-01 00:01:05 15 335.0 1
9 68 2017-04-01 00:01:08 8 335.0 1
10 81 2017-04-01 00:01:21 12 335.0 1
11 98 2017-04-01 00:01:38 9 335.0 1
12 102 2017-04-01 00:01:42 7 335.0 1
13 107 2017-04-01 00:01:47 12 335.0 1
14 113 2017-04-01 00:01:53 6 335.0 1
15 116 2017-04-01 00:01:56 6 335.0 1
16 121 2017-04-01 00:02:01 4 335.0 1
17 128 2017-04-01 00:02:08 16 335.0 1
18 143 2017-04-01 00:02:23 7 335.0 1
19 149 2017-04-01 00:02:29 11 335.0 1
20 163 2017-04-01 00:02:43 4 335.0 1
21 185 2017-04-01 00:03:05 9 335.0 1
22 239 2017-04-01 00:03:59 6 335.0 1
23 242 2017-04-01 00:04:02 13 335.0 1
24 272 2017-04-01 00:04:32 4 335.0 1
25 293 2017-04-01 00:04:53 8 335.0 1
26 301 2017-04-01 00:05:01 10 335.0 1
27 302 2017-04-01 00:05:02 7 335.0 1
28 305 2017-04-01 00:05:05 12 335.0 1
29 323 2017-04-01 00:05:23 5 335.0 1
30 326 2017-04-01 00:05:26 13 335.0 1
31 329 2017-04-01 00:05:29 10 335.0 1
32 365 2017-04-01 00:06:05 10 335.0 1
33 368 2017-04-01 00:06:08 11 335.0 1
34 411 2017-04-01 00:06:51 6 335.0 2
35 439 2017-04-01 00:07:19 6 335.0 2
36 440 2017-04-01 00:07:20 8 335.0 2
37 466 2017-04-01 00:07:46 7 335.0 2
38 475 2017-04-01 00:07:55 4 335.0 2
39 489 2017-04-01 00:08:09 4 335.0 2

所以为了清楚起见,当我求和并计算我得到的时间差时,

dd.groupby('group', as_index=False).agg({'v1': 'sum', 'v2': lambda x: max(x)-min(x)})
Out[332]:
# group v1 v2
#0 1 320 00:06:06
#1 2 326 00:07:34
#2 3 330 00:06:53
#...

最佳答案

设置:

dd['days'] = dd['v2'].diff().dt.days.fillna(0).astype(int)
dd = dd[['v1', 'v2', 'days']] # the order of the columns matters

初始化:

increment = pd.Series(False, index=dd.index)
v1_cum = 0
days_cum = 0

循环:

for row in dd.itertuples(name=None):  # faster than iterrows
v1_cum += row[1]
days_cum += row[3]
if v1_cum > 40 or days_cum > 61:
increment[row[0]] = True # first element of tuple is index
# notice the different re-initialization
v1_cum = row[1]
days_cum = 0

分配:

dd['flag'] = increment.cumsum() + 1

输出:

[1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9]

关于python - 基于 cumsum 和 timediff 创建标志,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46096801/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com