- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有以下系列:
s = pd.Series({
(0, 'InData'): 2944.51697, (0, 'InInterests'): 3703.208935,
(1, 'InData'): 6207.58004, (1, 'InInterests'): 3505.068411,
(2, 'InData'): 8133.00273, (2, 'InInterests'): 3735.028306,
(3, 'InData'): 9426.70471, (3, 'InInterests'): 2665.989291,
(4, 'InData'): 2604.1578, (4, 'InInterests'): 3103.310729,
(5, 'InData'): 6784.82916, (5, 'InInterests'): 3293.815375,
(6, 'InData'): 6823.6174, (6, 'InInterests'): 4121.83398,
(7, 'InData'): 4072.70277, (7, 'InInterests'): 3033.609368,
(8, 'InData'): 4614.60824, (8, 'InInterests'): 2955.216811,
(9, 'InData'): 6986.50075, (9, 'InInterests'): 2986.820394
}, name='KilobytesRaw').rename_axis(index=['Node', 'Type'])
:
Node Type
0 InData 2944.516970
InInterests 3703.208935
1 InData 6207.580040
InInterests 3505.068411
2 InData 8133.002730
InInterests 3735.028306
3 InData 9426.704710
InInterests 2665.989291
4 InData 2604.157800
InInterests 3103.310729
5 InData 6784.829160
InInterests 3293.815375
6 InData 6823.617400
InInterests 4121.833980
7 InData 4072.702770
InInterests 3033.609368
8 InData 4614.608240
InInterests 2955.216811
9 InData 6986.500750
InInterests 2986.820394
Name: KilobytesRaw, dtype: float64
我想计算 InData
和 InInterests
的总和,但在 Pandas 中找不到这种情况 indexing page ,也不在 Google 上。
所以我希望我的结果看起来像这样:
Node
0 6647.725905
1 9712.648451
...
9 9973.321144
最佳答案
Groupby sum
支持传递级别编号而不是列名称。这允许在一个级别而不是一个列上进行求和:
s.groupby(level=0).sum()
既然索引级别是命名的,我们也可以使用索引名称代替级别编号:
s.groupby(level='Node').sum()
任一选项都会产生:
Node
0 6647.725905
1 9712.648451
2 11868.031036
3 12092.694001
4 5707.468529
5 10078.644535
6 10945.451380
7 7106.312138
8 7569.825051
9 9973.321144
Name: KilobytesRaw, dtype: float64
关于python - Pandas 按索引分组并计算总和,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46229807/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!