- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
PySpark 中是否有类似于 eval 函数的等效函数。
我正在尝试将 Python 代码转换为 PySpark
我正在查询数据框,其中一列的数据如下所示,但采用字符串格式。
[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]
假设“x”是数据框中保存该值的列。
现在我想传入字符串列“x”并获取列表,以便我可以将其传递给mapPartition函数。
我想避免迭代驱动程序上的每一行,这就是我这样想的原因。
在 Python 中使用 eval() 函数(如果使用):我得到以下输出:
x = "[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]"
list = eval(x)
for i in list: print i
输出:(这也是我在 PySpark 中想要的)
{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}
{u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}
{u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}
如何在 PySpark 中执行此操作?
最佳答案
您可以通过使用 from_json
函数将 json 字符串转换为实际的 json 受益。为此,您必须定义一个与 json 字符串匹配的 schema
。最后使用 explode
函数将结构数组分隔到不同的行,就像使用 eval
一样。
如果您的数据为
x = "[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]"
然后创建dataframe
df = sqlContext.createDataFrame([(x,),], ["x"])
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|x |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]|
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
root
|-- x: string (nullable = true)
使用 json
正如我所解释的,您需要一个 schema
、regexp_replace
函数、from_json
函数和 explode
函数如
from pyspark.sql import types as T
schema = T.ArrayType(T.StructType([T.StructField('date', T.StringType()), T.StructField('by', T.StringType()), T.StructField('value', T.StringType())]))
from pyspark.sql import functions as F
df = df.withColumn("x", F.explode(F.from_json(F.regexp_replace(df['x'], "(u')", "'"), schema=schema)))
这应该给你
+-----------------------------------+
|x |
+-----------------------------------+
|[2015-02-08,abc@gg.com,NA] |
|[2016-02-08,dfg@yaa.com,applicable]|
|[2017-02-08,wrwe@hot.com,ufc] |
+-----------------------------------+
root
|-- x: struct (nullable = true)
| |-- date: string (nullable = true)
| |-- by: string (nullable = true)
| |-- value: string (nullable = true)
如果您需要问题中提到的 json 字符串,那么您可以使用 to_json
函数作为
df = df.withColumn("x", F.to_json(df['x']))
这会给你
+-------------------------------------------------------------+
|x |
+-------------------------------------------------------------+
|{"date":"2015-02-08","by":"abc@gg.com","value":"NA"} |
|{"date":"2016-02-08","by":"dfg@yaa.com","value":"applicable"}|
|{"date":"2017-02-08","by":"wrwe@hot.com","value":"ufc"} |
+-------------------------------------------------------------+
仅使用字符串
如果您不想经历 json 的所有复杂性,那么您可以简单地使用字符串。为此,您需要嵌套regex_replace
、split
和explode
函数作为
from pyspark.sql import functions as F
df = df.withColumn("x", F.explode(F.split(F.regexp_replace(F.regexp_replace(F.regexp_replace(df['x'], "(u')", "'"), "[\\[\\]\s]", ""), "},\\{", "};&;{"), ";&;")))
这应该给你
+-------------------------------------------------------------+
|x |
+-------------------------------------------------------------+
|{'date':'2015-02-08','by':'abc@gg.com','value':'NA'} |
|{'date':'2016-02-08','by':'dfg@yaa.com','value':'applicable'}|
|{'date':'2017-02-08','by':'wrwe@hot.com','value':'ufc'} |
+-------------------------------------------------------------+
关于python - 如何从 PySpark 中的字符串获取列表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49204024/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!